These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16658522)

  • 41. A phytochrome-dependent embryonic factor modulates gibberellin responses in the embryo and micropylar endosperm of Datura ferox seeds.
    Arana MV; de Miguel LC; Sánchez RA
    Planta; 2006 Mar; 223(4):847-57. PubMed ID: 16211389
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Abscisic acid transporters cooperate to control seed germination.
    Kang J; Yim S; Choi H; Kim A; Lee KP; Lopez-Molina L; Martinoia E; Lee Y
    Nat Commun; 2015 Sep; 6():8113. PubMed ID: 26334616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The biomechanics of seed germination.
    Steinbrecher T; Leubner-Metzger G
    J Exp Bot; 2017 Feb; 68(4):765-783. PubMed ID: 27927995
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies in Wild Oat Seed Dormancy: I. THE ROLE OF ETHYLENE IN DORMANCY BREAKAGE AND GERMINATION OF WILD OAT SEEDS (AVENA FATUA L.).
    Adkins SW; Ross JD
    Plant Physiol; 1981 Feb; 67(2):358-62. PubMed ID: 16661675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of Endogenous Growth Regulators in Seed Dormancy of Avena fatua: I. Short Chain Fatty Acids.
    Metzger JD; Sebesta DK
    Plant Physiol; 1982 Nov; 70(5):1480-5. PubMed ID: 16662702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of Endogenous Plant Growth Regulators in Seed Dormancy of Avena fatua: II. Gibberellins.
    Metzger JD
    Plant Physiol; 1983 Nov; 73(3):791-5. PubMed ID: 16663302
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolically active glucosides in oleaceae seeds: I. The effects of germination, growth, and hormone treatments.
    Sondheimer E; Blank GE; Galson EC; Sheets FM
    Plant Physiol; 1970 Jun; 45(6):658-62. PubMed ID: 16657368
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Embryology in Trithuria submersa (Hydatellaceae) and relationships between embryo, endosperm, and perisperm in early-diverging flowering plants.
    Friedman WE; Bachelier JB; Hormaza JI
    Am J Bot; 2012 Jun; 99(6):1083-95. PubMed ID: 22688427
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Single-Seed Assay for Endo-[beta]-Mannanase Activity from Tomato Endosperm and Radicle Tissues.
    Still DW; Dahal P; Bradford KJ
    Plant Physiol; 1997 Jan; 113(1):13-20. PubMed ID: 12223589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. KAR
    Orłowska A; Kępczyński J
    J Plant Physiol; 2024 Sep; 303():154363. PubMed ID: 39366098
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Membrene turnover in imbibed and dormant embryos of the wild oat (Avena fatua L.) : I. Protein turnover and membrane replacement.
    Cuming AC; Osborne DJ
    Planta; 1978 Jan; 139(3):209-17. PubMed ID: 24414262
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lettuce seed germination: modulation of pregermination protein synthesis by gibberellic Acid, abscisic Acid, and cytokinin.
    Fountain DW; Bewley JD
    Plant Physiol; 1976 Oct; 58(4):530-6. PubMed ID: 16659711
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Underdeveloped embryos and germination in Aristolochia galeata seeds.
    Alves-Da-Silva D; Borghetti F; Thompson K; Pritchard H; Grime JP
    Plant Biol (Stuttg); 2011 Jan; 13 Suppl 1():104-8. PubMed ID: 21134093
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Variability of Seed Germination and Dormancy Characteristics and Genetic Analysis of Latvian
    Ņečajeva J; Bleidere M; Jansone Z; Gailīte A; Ruņģis D
    Plants (Basel); 2021 Jan; 10(2):. PubMed ID: 33530398
    [No Abstract]   [Full Text] [Related]  

  • 55. The induction of enzyme activity in the endosperm of germinating castor-bean seeds.
    Marriott KM; Northcote DH
    Biochem J; 1975 Oct; 152(1):65-70. PubMed ID: 1212227
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Models for gibberellic acid transport and enzyme production and transport in the aleurone layer of barley.
    O'Brien R; Fowkes N; Bassom AP
    J Theor Biol; 2010 Nov; 267(1):15-21. PubMed ID: 20696174
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of soil moisture levels on the growth and reproductive behaviour of Avena fatua and Avena ludoviciana.
    Sahil ; Mahajan G; Loura D; Raymont K; Chauhan BS
    PLoS One; 2020; 15(7):e0234648. PubMed ID: 32645027
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of tricyclic butenolides and comparison their effects with known smoke-butenolide, KAR1.
    Krawczyk E; Koprowski M; Cembrowska-Lech D; Wójcik A; Kępczyński J
    J Plant Physiol; 2017 Aug; 215():91-99. PubMed ID: 28618259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Red-light- and gibberellic-acid-enhanced α-galactosidase activity in germinating lettuce seeds, cv. Grand Rapids : Control by the axis.
    Leung DW; Bewley JD
    Planta; 1981 Aug; 152(5):436-41. PubMed ID: 24301117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fusion of oil bodies in endosperm of oat grains.
    Heneen WK; Karlsson G; Brismar K; Gummeson PO; Marttila S; Leonova S; Carlsson AS; Bafor M; Banas A; Mattsson B; Debski H; Stymne S
    Planta; 2008 Sep; 228(4):589-99. PubMed ID: 18563438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.