These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16658705)

  • 1. Phytochrome stability in vitro: I. Effect of metal ions.
    Lisansky SG; Galston AW
    Plant Physiol; 1974 Mar; 53(3):352-9. PubMed ID: 16658705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avena sativa L. contains three phytochromes, only one of which is abundant in etiolated tissue.
    Wang YC; Stewart SJ; Cordonnier MM; Pratt LH
    Planta; 1991 Apr; 184(1):96-104. PubMed ID: 24193935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoclonal antibodies directed to phytochrome from green leaves of Avena sativa L. cross-react weakly or not at all with the phytochrome that is most abundant in etiolated shoots of the same species.
    Pratt LH; Stewart SJ; Shimazaki Y; Wang YC; Cordonnier MM
    Planta; 1991 Apr; 184(1):87-95. PubMed ID: 24193934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical differences between the red- and the far-red-absorbing forms of phytochrome.
    Hunt RE; Pratt LH
    Biochemistry; 1981 Feb; 20(4):941-5. PubMed ID: 7213624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytochrome Characterization by Rabbit Antiserum against High Molecular Weight Phytochrome.
    Cundiff SC; Pratt LH
    Plant Physiol; 1975 Feb; 55(2):207-11. PubMed ID: 16659052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifications of Sulfhydryl Groups on Phytochrome and Their Influence on Physicochemical Differences between the Red- and Far-Red-Absorbing Forms.
    Smith WO; Cyr KL
    Plant Physiol; 1988 May; 87(1):195-200. PubMed ID: 16666102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular localisation of phytochrome in oat coleoptiles by electron microscopy : Dependence on light pretreatments and the amount of the active, far-red-absorbing form.
    Hofmann E; Speth V; Schäfer E
    Planta; 1990 Feb; 180(3):372-7. PubMed ID: 24202016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative immunochemistry of phytochrome.
    Pratt LH
    Plant Physiol; 1973 Jan; 51(1):203-9. PubMed ID: 16658285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoprecipitation of phytochrome from green Avena by rabbit antisera to phytochrome from etiolated Avena.
    Shimazaki Y; Pratt LH
    Planta; 1986 Sep; 168(4):512-5. PubMed ID: 24232327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification with Monoclonal Antibodies of a Second Antigenic Domain on Avena Phytochrome that Changes upon Its Photoconversion.
    Shimazaki Y; Cordonnier MM; Pratt LH
    Plant Physiol; 1986 Sep; 82(1):109-13. PubMed ID: 16664975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A photoreversible circular dichroism spectral change in oat phytochrome is suppressed by a monoclonal antibody that binds near its N-terminus and by chromophore modification.
    Chai YG; Song PS; Cordonnier MM; Pratt LH
    Biochemistry; 1987 Aug; 26(16):4947-52. PubMed ID: 3663636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome Levels in Light-Grown Avena Change in Response to End-of-Day Irradiations.
    Stewart SJ; Pratt LH; Cordonnier-Pratt IM
    Plant Physiol; 1992 Aug; 99(4):1708-10. PubMed ID: 16669098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Tobacco Expressing Functional Oat Phytochrome : Domains Responsible for the Rapid Degradation of Pfr Are Conserved between Monocots and Dicots.
    Cherry JR; Hershey HP; Vierstra RD
    Plant Physiol; 1991 Jul; 96(3):775-85. PubMed ID: 16668254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemistry of 124 kilodalton Avena phytochrome in vitro.
    Vierstra RD; Quail PH
    Plant Physiol; 1983 May; 72(1):264-7. PubMed ID: 16662975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunopurification and initial characterization of dicotyledonous phytochrome.
    Cordonnier MM; Pratt LH
    Plant Physiol; 1982 Feb; 69(2):360-5. PubMed ID: 16662209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function studies on phytochrome. Preliminary characterization of highly purified phytochrome from Avena sativa enriched in the 124-kilodalton species.
    Litts JC; Kelly JM; Lagarias JC
    J Biol Chem; 1983 Sep; 258(18):11025-31. PubMed ID: 6885811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation.
    Shanklin J; Jabben M; Vierstra RD
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):359-63. PubMed ID: 16593800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspects of phytochrome decay in etiolated seedlings under continuous Illumination.
    Kendrick RE
    Planta; 1972 Dec; 102(4):286-93. PubMed ID: 24482270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral Characterization and Proteolytic Mapping of Native 120-Kilodalton Phytochrome from Cucurbita pepo L.
    Vierstra RD; Quail PH
    Plant Physiol; 1985 Apr; 77(4):990-8. PubMed ID: 16664177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and spectroscopic properties of 124-kDa oat phytochrome.
    Chai YG; Singh BR; Song PS; Lee J; Robinson GW
    Anal Biochem; 1987 Jun; 163(2):322-30. PubMed ID: 3661984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.