These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16658842)

  • 1. Seasonal Patterns of Acid Metabolism and Gas Exchange in Opuntia basilaris.
    Szarek SR; Ting IP
    Plant Physiol; 1974 Jul; 54(1):76-81. PubMed ID: 16658842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irrigation magnifies CAM-photosynthesis in Opuntia basilaris (Cactaceae).
    Hanscom Z; Ting IP
    Oecologia; 1978 Jan; 33(1):1-15. PubMed ID: 28309263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between Stomatal Behavior and Internal Carbon Dioxide Concentration in Crassulacean Acid Metabolism Plants.
    Cockburn W
    Plant Physiol; 1979 Jun; 63(6):1029-32. PubMed ID: 16660851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drought Adaptation in Opuntia basilaris: Significance of Recycling Carbon through Crassulacean Acid Metabolism.
    Szarek SR; Johnson HB; Ting IP
    Plant Physiol; 1973 Dec; 52(6):539-41. PubMed ID: 16658600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiration and Gas Exchange in Stem Tissue of Opuntia basilaris.
    Szarek SR; Ting IP
    Plant Physiol; 1974 Dec; 54(6):829-34. PubMed ID: 16658984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon assimilation patterns and growth of the introduced CAM plant Opuntia inermis in Eastern Australia.
    Osmond CB; Nott DL; Firth PM
    Oecologia; 1979 Jan; 40(3):331-350. PubMed ID: 28309616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur dioxide effects on plants exhibiting Crassulacean Acid Metabolism.
    Olszyk DM; Bytnerowicz A; Fox CA
    Environ Pollut; 1987; 43(1):47-62. PubMed ID: 15092814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecophysiological Significance of CO(2)-Recycling via Crassulacean Acid Metabolism in Talinum calycinum Engelm. (Portulacaceae).
    Martin CE; Higley M; Wang WZ
    Plant Physiol; 1988 Feb; 86(2):562-8. PubMed ID: 16665946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water Relations, Diurnal Acidity Changes, and Productivity of a Cultivated Cactus, Opuntia ficus-indica.
    Acevedo E; Badilla I; Nobel PS
    Plant Physiol; 1983 Jul; 72(3):775-80. PubMed ID: 16663084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas exchange of Agropyron desertorum: diurnal patterns and responses to water vapor gradient and temperature.
    Nowak RS; Anderson JE; Toft NL
    Oecologia; 1988 Nov; 77(3):289-295. PubMed ID: 28311939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil phosphorous and endogenous rhythms exert a larger impact than CO2 or temperature on nocturnal stomatal conductance in Eucalyptus tereticornis.
    de Dios VR; Turnbull MH; Barbour MM; Ontedhu J; Ghannoum O; Tissue DT
    Tree Physiol; 2013 Nov; 33(11):1206-15. PubMed ID: 24271087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal Shifts of Photosynthesis in Portulacaria afra (L.) Jacq.
    Guralnick LJ; Rorabaugh PA; Hanscom Z
    Plant Physiol; 1984 Nov; 76(3):643-6. PubMed ID: 16663899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature.
    Xu L; Baldocchi DD
    Tree Physiol; 2003 Sep; 23(13):865-77. PubMed ID: 14532010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interception of photosynthetically active radiation by cacti of different morphology.
    Nobel PS
    Oecologia; 1980 May; 45(2):160-166. PubMed ID: 28309525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of seasonal changes in the Midwest on Crassulacean Acid Metabolism (CAM) in Opuntia humifusa Raf.
    Koch KE; Kennedy RA
    Oecologia; 1980 Jan; 45(3):390-395. PubMed ID: 28309570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.
    Romero P; Botía P; Keller M
    J Plant Physiol; 2017 Sep; 216():58-73. PubMed ID: 28577386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C
    Gulmon SL; Bloom AJ
    Oecologia; 1979 Jan; 38(2):217-222. PubMed ID: 28308891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecophysiological studies of Sonoran Desert plants : IV. Seasonal photosynthetic capacities of Acacia greggii and Cercidium microphyllum.
    Szarek SR; Woodhouse RM
    Oecologia; 1978 Jan; 37(2):221-229. PubMed ID: 28309652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic profiling of epidermal and mesophyll tissues under water-deficit stress in Opuntia ficus-indica reveals stress-adaptive metabolic responses.
    Mayer JA; Wone BWM; Alexander DC; Guo L; Ryals JA; Cushman JC
    Funct Plant Biol; 2021 Jun; 48(7):717-731. PubMed ID: 33896444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diurnal and seasonal variations in the photosynthetic performance and water relations of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum.
    Llorens L; Peñuelas J; Filella I
    Physiol Plant; 2003 May; 118(1):84-95. PubMed ID: 12702017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.