BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16658850)

  • 1. Structure and function of developing barley plastids.
    Robertson D; Laetsch WM
    Plant Physiol; 1974 Aug; 54(2):148-59. PubMed ID: 16658850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro protein synthesis by plastids of Phaseolus vulgaris. IV. Amino acid incorporation by etioplasts and effect of illumination of leaves on incorporation by plastids.
    Drumm HE; Margulies MM
    Plant Physiol; 1970 Apr; 45(4):435-42. PubMed ID: 5427113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the plastid ndhF gene product in photosynthetic and non-photosynthetic tissues of developing barley seedlings.
    Catalá R; Sabater B; Guéra A
    Plant Cell Physiol; 1997 Dec; 38(12):1382-8. PubMed ID: 9522468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroplast transcription is required to express the nuclear genes rbcS and cab. Plastid DNA copy number is regulated independently.
    Rapp JC; Mullet JE
    Plant Mol Biol; 1991 Oct; 17(4):813-23. PubMed ID: 1912500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High biological variability of plastids, photosynthetic pigments and pigment forms of leaf primordia in buds.
    Solymosi K; Morandi D; Bóka K; Böddi B; Schoefs B
    Planta; 2012 May; 235(5):1035-49. PubMed ID: 22160501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytokinin-binding protein (70 kDa) from etioplasts and amyloplasts of etiolated maize seedlings and chloroplasts of green plants and its putative function.
    Brovko FA; Vasil'eva VS; Lushnikova AL; Selivankina SY; Karavaiko NN; Boziev KM; Shepelyakovskaya AO; Moshkov DA; Pavlik LL; Kusnetsov VV; Kulaeva ON
    J Exp Bot; 2010 Jul; 61(12):3461-74. PubMed ID: 20584787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis in the basal growing zone of barley leaves.
    Baier M; Bilger W; Wolf R; Dietz KJ
    Photosynth Res; 1996 Aug; 49(2):169-81. PubMed ID: 24271614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient etiolation: protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum).
    Solymosi K; Bóka K; Böddi B
    Tree Physiol; 2006 Aug; 26(8):1087-96. PubMed ID: 16651258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of chlorophyll B, and the fluorescence properties and photochemical activities of isolated plastids from greening pea seedlings.
    Thorne SW; Boardman NK
    Plant Physiol; 1971 Feb; 47(2):252-61. PubMed ID: 16657605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distribution of NADPH-protochlorophyllide oxidoreductase in relation to chlorophyll accumulation along the barley leaf gradient.
    Dehesh K; Häuser I; Apel K; Kloppstech K
    Planta; 1983 Jun; 158(2):134-9. PubMed ID: 24264542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of gene expression during higher plant chloroplast biogenesis. Protein synthesis and transcript levels of psbA, psaA-psaB, and rbcL in dark-grown and illuminated barley seedlings.
    Klein RR; Mullet JE
    J Biol Chem; 1987 Mar; 262(9):4341-8. PubMed ID: 3558409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of low temperature on the development of the lamellar system in chloroplasts.
    KLEIN S
    J Biophys Biochem Cytol; 1960 Oct; 8(2):529-38. PubMed ID: 13756693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two NADPH:Protochlorophyllide Oxidoreductases in Barley: Evidence for the Selective Disappearance of PORA during the Light-Induced Greening of Etiolated Seedlings.
    Reinbothe S; Reinbothe C; Holtorf H; Apel K
    Plant Cell; 1995 Nov; 7(11):1933-1940. PubMed ID: 12242364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastid gene expression in a yellow-green leaf mutant of Petunia hybrida.
    Colijn CM; Mol JN; Kool AJ; Nijkamp HJ
    Planta; 1983 Apr; 157(3):209-17. PubMed ID: 24264149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Photochemical Activity and the Appearance of the High Potential Form of Cytochrome b-559 in Greening Barley Seedlings.
    Henningsen KW; Boardman NK
    Plant Physiol; 1973 Jun; 51(6):1117-26. PubMed ID: 16658477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The light-dependent accumulation of the P700 chlorophyll a protein of the photosystem I reaction center in barley. Evidence for translational control.
    Kreuz K; Dehesh K; Apel K
    Eur J Biochem; 1986 Sep; 159(3):459-67. PubMed ID: 3530758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural localization of photosynthetic activity in thylakoids during chloroplast development in maize.
    Wrischer M
    Planta; 1989 Jan; 177(1):18-23. PubMed ID: 24212268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Light on Plastid Differentiation, Chlorophyll Biosynthesis, and Essential Oil Composition in Rosemary (
    Böszörményi A; Dobi A; Skribanek A; Pávai M; Solymosi K
    Front Plant Sci; 2020; 11():196. PubMed ID: 32194595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The light-dependent control of chloroplast development in barley (Hordeum vulgare L).
    Apel K; Gollmer I; Batschauer A
    J Cell Biochem; 1983; 23(1-4):181-9. PubMed ID: 6202706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular physiology of plastids. 8. Pigment and membrane formation in plastids of barley greening under low light intensity.
    Henningsen KW; Boynton JE
    J Cell Biol; 1970 Feb; 44(2):290-304. PubMed ID: 5411076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.