These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16658984)

  • 1. Respiration and Gas Exchange in Stem Tissue of Opuntia basilaris.
    Szarek SR; Ting IP
    Plant Physiol; 1974 Dec; 54(6):829-34. PubMed ID: 16658984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal Patterns of Acid Metabolism and Gas Exchange in Opuntia basilaris.
    Szarek SR; Ting IP
    Plant Physiol; 1974 Jul; 54(1):76-81. PubMed ID: 16658842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C
    Gulmon SL; Bloom AJ
    Oecologia; 1979 Jan; 38(2):217-222. PubMed ID: 28308891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drought Adaptation in Opuntia basilaris: Significance of Recycling Carbon through Crassulacean Acid Metabolism.
    Szarek SR; Johnson HB; Ting IP
    Plant Physiol; 1973 Dec; 52(6):539-41. PubMed ID: 16658600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Irrigation magnifies CAM-photosynthesis in Opuntia basilaris (Cactaceae).
    Hanscom Z; Ting IP
    Oecologia; 1978 Jan; 33(1):1-15. PubMed ID: 28309263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interception of photosynthetically active radiation by cacti of different morphology.
    Nobel PS
    Oecologia; 1980 May; 45(2):160-166. PubMed ID: 28309525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur dioxide effects on plants exhibiting Crassulacean Acid Metabolism.
    Olszyk DM; Bytnerowicz A; Fox CA
    Environ Pollut; 1987; 43(1):47-62. PubMed ID: 15092814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of cactus spines on light interception and Photosystem II for three sympatric species of Opuntia from the Mojave Desert.
    Loik ME
    Physiol Plant; 2008 Sep; 134(1):87-98. PubMed ID: 18507791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between Stomatal Behavior and Internal Carbon Dioxide Concentration in Crassulacean Acid Metabolism Plants.
    Cockburn W
    Plant Physiol; 1979 Jun; 63(6):1029-32. PubMed ID: 16660851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory attributes, physicochemical and antioxidant characteristics, and protein profile of wild prickly pear fruits (O. macrocentra Engelm., O. phaeacantha Engelm., and O. engelmannii Salm-Dyck ex Engelmann.) and commercial prickly pear fruits (O. ficus-indica (L.) Mill.).
    Valero-Galván J; González-Fernández R; Sigala-Hernández A; Núñez-Gastélum JA; Ruiz-May E; Rodrigo-García J; Larqué-Saavedra A; Martínez-Ruiz NDR
    Food Res Int; 2021 Feb; 140():109909. PubMed ID: 33648207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchöe, and Opuntia.
    Winter K; Garcia M; Holtum JA
    J Exp Bot; 2008; 59(7):1829-40. PubMed ID: 18440928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal temperature acclimation of a prickly-pear cactus in south-central Arizona.
    Nisbet RA; Patten DT
    Oecologia; 1974 Dec; 15(4):345-352. PubMed ID: 28308630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crassulacean Acid Metabolism in the Succulent C(4) Dicot, Portulaca oleracea L Under Natural Environmental Conditions.
    Koch KE; Kennedy RA
    Plant Physiol; 1982 Apr; 69(4):757-61. PubMed ID: 16662291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of respiratory CO(2) in stems of loblolly pine (Pinus taeda L.) seedlings.
    Martin TA; Teskey RO; Dougherty PM
    Tree Physiol; 1994 May; 14(5):481-95. PubMed ID: 14967684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas Exchange Characteristics of the Submerged Aquatic Crassulacean Acid Metabolism Plant, Isoetes howellii.
    Keeley JE; Bowes G
    Plant Physiol; 1982 Nov; 70(5):1455-8. PubMed ID: 16662697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between Photosynthesis and Respiration: The Effect of Carbohydrate Status on the Rate of CO(2) Production by Respiration in Darkened and Illuminated Wheat Leaves.
    Azcón-Bieto J; Osmond CB
    Plant Physiol; 1983 Mar; 71(3):574-81. PubMed ID: 16662869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Close coupling of whole-plant respiration to net photosynthesis and carbohydrates.
    Wertin TM; Teskey RO
    Tree Physiol; 2008 Dec; 28(12):1831-40. PubMed ID: 19193566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal variation in CO2 efflux of stems and branches of Norway spruce trees.
    Acosta M; Pavelka M; Pokorny R; Janous D; Marek MV
    Ann Bot; 2008 Feb; 101(3):469-77. PubMed ID: 18057065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.