BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16659023)

  • 1. The glycolate pathway and photosynthetic competence in euglena.
    Davis B; Merrett MJ
    Plant Physiol; 1975 Jan; 55(1):30-4. PubMed ID: 16659023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribulose 1,5-Diphosphate Carboxylase Synthesis in Euglena: II. Effect of Inhibitors on Enzyme Synthesis during Regreening and Subsequent Transfer to Darkness.
    Lord JM; Armitage TL; Merrett MJ
    Plant Physiol; 1975 Nov; 56(5):600-4. PubMed ID: 16659352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribulose diphosphate carboxylase synthesis in euglena: increased enzyme activity after transferring regreening cells to darkness.
    Lord JM; Merrett MJ
    Plant Physiol; 1975 May; 55(5):890-2. PubMed ID: 16659186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastid development in primary leaves of Phaseolus vulgaris : The effects of D-threo and L-threo chloramphenicol on the light-induced formation of enzymes of the photosynthetic carbon pathway.
    Ireland HM; Bradbeer JW
    Planta; 1971 Sep; 96(3):254-61. PubMed ID: 24493123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulation of glycolate metabolism in division synchronized cultures of euglena.
    Codd GA; Merrett MJ
    Plant Physiol; 1971 May; 47(5):640-3. PubMed ID: 16657676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of glycidate, an inhibitor of glycolate synthesis in leaves, on the activity of some enzymes of the glycolate pathway.
    Zelitch I
    Plant Physiol; 1978 Feb; 61(2):236-41. PubMed ID: 16660267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photorespiratory glycolate-glyoxylate metabolism.
    Dellero Y; Jossier M; Schmitz J; Maurino VG; Hodges M
    J Exp Bot; 2016 May; 67(10):3041-52. PubMed ID: 26994478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic products of division synchronized cultures of euglena.
    Codd GA; Merrett MJ
    Plant Physiol; 1971 May; 47(5):635-9. PubMed ID: 16657675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutritional Regulation of Organelle Biogenesis in Euglena: INDUCTION OF MICROBODIES.
    Horrum MA; Schwartzbach SD
    Plant Physiol; 1981 Aug; 68(2):430-4. PubMed ID: 16661930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphopyruvate carboxylase activity and carbon dioxide fixation via C4 acids over the division cycle in synchronized Euglena cultures.
    Codd GA; Merrett MJ
    Planta; 1971 Jun; 100(2):124-30. PubMed ID: 24488136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Light on the Synthesis of Mitochondrial Enzymes in Division-synchronized Euglena Cultures.
    Davis B; Merrett MJ
    Plant Physiol; 1974 Apr; 53(4):575-80. PubMed ID: 16658745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-mediated de novo synthesis of glycolate-based polyhydroxyalkanoate in Escherichia coli.
    Matsumoto K; Saito J; Yokoo T; Hori C; Nagata A; Kudoh Y; Ooi T; Taguchi S
    J Biosci Bioeng; 2019 Sep; 128(3):302-306. PubMed ID: 30987875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of Ribulose 1,5-Diphosphate Carboxylase and Increase in Proteolytic Activity during Senescence of Detached Primary Barley Leaves.
    Peterson LW; Huffaker RC
    Plant Physiol; 1975 Jun; 55(6):1009-15. PubMed ID: 16659200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malate dehydrogenase isoenzymes in division synchronized cultures of euglena.
    Davis B; Merrett MJ
    Plant Physiol; 1973 Jun; 51(6):1127-32. PubMed ID: 16658478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biosynthesis of ribulose bisphosphate carboxylase. Uncoupling of the synthesis of the large and small subunits in isolated soybean leaf cells.
    Barraclough R; Ellis RJ
    Eur J Biochem; 1979 Feb; 94(1):165-77. PubMed ID: 571334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative studies on the activity of carboxylases and other enzymes in relation to the new pathway of photosynthetic carbon dioxide fixation in tropical grasses.
    Slack CR; Hatch MD
    Biochem J; 1967 Jun; 103(3):660-5. PubMed ID: 4292834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the synthesis in vivo of proteins of the Calvin cycle and of the photosynthetic electron-transfer pathway on chloroplast ribosomes.
    Smillie RM; Graham D; Dwyer MR; Grieve A; Tobin NF
    Biochem Biophys Res Commun; 1967 Aug; 28(4):604-10. PubMed ID: 6059239
    [No Abstract]   [Full Text] [Related]  

  • 18. [Enzyme formation in rye seedlings during the change from heterotrophic to autotrophic growth].
    Feierabend J
    Planta; 1966 Dec; 71(4):326-55. PubMed ID: 24554107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the formation of photosynthetic enzymes by inhibitors of photosynthesis.
    McMahon D; Bogorad L
    Plant Physiol; 1968 Feb; 43(2):188-92. PubMed ID: 16656750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of glycolate oxidation with photosynthetic electron transport in plant and algal chloroplasts.
    Goyal A; Tolbert NE
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3319-24. PubMed ID: 11607648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.