These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 16659127)

  • 1. Temperature Sensitivity of the Latent Phase in Ethylene-induced Elongation.
    Palmer J
    Plant Physiol; 1975 Mar; 55(3):581-2. PubMed ID: 16659127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure of Ethylene to Change the Distribution of Indoleacetic Acid in the Petiole of Coleus blumei X frederici during Epinasty.
    Palmer JH
    Plant Physiol; 1976 Oct; 58(4):513-5. PubMed ID: 16659707
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Prokopoviča V; Ievinsh G
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abscission: the initial effect of ethylene is in the leaf blade.
    Beyer EM
    Plant Physiol; 1975 Feb; 55(2):322-7. PubMed ID: 16659075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene-Mediated Regulation of Gibberellin Content and Growth in Helianthus annuus L.
    Pearce DW; Reid DM; Pharis RP
    Plant Physiol; 1991 Apr; 95(4):1197-202. PubMed ID: 16668111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of oxygen in submergence-induced petiole elongation in Rumex palustris: in situ measurements of oxygen in petioles of intact plants using micro-electrodes.
    Rijnders JGHM; Armstrong W; Darwent MJ; Blom CWPM; Voesenek LACJ
    New Phytol; 2000 Sep; 147(3):497-504. PubMed ID: 33862947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris.
    Vreeburg RA; Benschop JJ; Peeters AJ; Colmer TD; Ammerlaan AH; Staal M; Elzenga TM; Staals RH; Darley CP; McQueen-Mason SJ; Voesenek LA
    Plant J; 2005 Aug; 43(4):597-610. PubMed ID: 16098112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of endogenous ethylene in the expansion of Helianthus annuus leaves.
    Lee SH; Reid DM
    Can J Bot; 1997 Mar; 75(3):501-8. PubMed ID: 11541081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stimulating effects of ethylene and auxin on petiole elongation and on hyponastic curvature are independent processes in submerged Rumex palustris.
    Cox MC; Peeters AJ; Voesenek LA
    Plant Cell Environ; 2006 Feb; 29(2):282-90. PubMed ID: 17080643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L.
    Wang Y; Noguchi K; Terashima I
    Plant Cell Environ; 2008 Sep; 31(9):1307-16. PubMed ID: 18537998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apical correlative effects in leaf epinasty of tomato.
    Kazemi S; Kefford NP
    Plant Physiol; 1974 Oct; 54(4):512-9. PubMed ID: 16658919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of carbon dioxide on ethylene production and action in intact sunflower plants.
    Dhawan KR; Bassi PK; Spencer MS
    Plant Physiol; 1981 Oct; 68(4):831-4. PubMed ID: 16662007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous Ethylene Concentration Is Not a Major Determinant of Fruit Abscission in Heat-Stressed Cotton (
    Najeeb U; Sarwar M; Atwell BJ; Bange MP; Tan DKY
    Front Plant Sci; 2017; 8():1615. PubMed ID: 28983303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene Sensitivity and Response Sensor Expression in Petioles of Rumex Species at Low O2 and High CO2 Concentrations.
    Voesenek L; Vriezen WH; Smekens M; Huitink F; Bogemann GM; Blom C
    Plant Physiol; 1997 Aug; 114(4):1501-1509. PubMed ID: 12223784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent changes of cell shape during heterophyllous leaf formation in Ludwigia arcuata (Onagraceae).
    Sato M; Tsutsumi M; Ohtsubo A; Nishii K; Kuwabara A; Nagata T
    Planta; 2008 Jun; 228(1):27-36. PubMed ID: 18309514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abscission: support for a role of ethylene modification of auxin transport.
    Beyer EM
    Plant Physiol; 1973 Jul; 52(1):1-5. PubMed ID: 16658489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of effects of atmospheric ethylene on tree leaf shedding.
    Sawada S; Hazama Y; Hayakawa T; Totsuka T
    Environ Pollut; 1989; 61(3):173-85. PubMed ID: 15092358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pithiness in plants: I. The effect of mechanical perturbation and the involvement of ethylene in petiole pithiness in celery.
    Pressman E; Huberman M; Aloni B; Jaffe MJ
    Plant Cell Physiol; 1984; 25(6):891-7. PubMed ID: 11540808
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Okano K; Fukuzawa T; Tazakp T; Totsuka T
    New Phytol; 1986 Jan; 102(1):73-84. PubMed ID: 33873893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles.
    Cox MC; Benschop JJ; Vreeburg RA; Wagemaker CA; Moritz T; Peeters AJ; Voesenek LA
    Plant Physiol; 2004 Oct; 136(2):2948-60; discussion 3001. PubMed ID: 15466223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.