These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16659176)

  • 41. The senescence of detached leaves of tropaeolum.
    Thimann KV
    Plant Physiol; 1985 Dec; 79(4):1107-10. PubMed ID: 16664539
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of exogenous 1,3-diaminopropane and spermidine on senescence of oat leaves : I. Inhibition of protease activity, ethylene production, and chlorophyll loss as related to polyamine content.
    Shih LM; Kaur-Sawhney R; Fuhrer J; Samanta S; Galston AW
    Plant Physiol; 1982 Dec; 70(6):1592-6. PubMed ID: 16662725
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolism of activated oxygen in detached wheat and rye leaves and its relevance to the initiation of senescence.
    Kar M; Feierabend J
    Planta; 1984 Apr; 160(5):385-91. PubMed ID: 24258664
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Initial stages in the onset of senescence in tobacco leaves.
    Vonshak A; Richmond AE
    Plant Physiol; 1975 Apr; 55(4):786-90. PubMed ID: 16659168
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification and Characterization of an Early Leaf Senescence Gene
    Yamatani H; Heng T; Yamada T; Kusaba M; Kaga A
    Front Plant Sci; 2021; 12():784105. PubMed ID: 34975969
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chlorophyll catabolism precedes changes in chloroplast structure and proteome during leaf senescence.
    Tamary E; Nevo R; Naveh L; Levin-Zaidman S; Kiss V; Savidor A; Levin Y; Eyal Y; Reich Z; Adam Z
    Plant Direct; 2019 Mar; 3(3):e00127. PubMed ID: 31245770
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.
    Carrión CA; Costa ML; Martínez DE; Mohr C; Humbeck K; Guiamet JJ
    J Exp Bot; 2013 Nov; 64(16):4967-80. PubMed ID: 24106291
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).
    Marquez-Garcia B; Shaw D; Cooper JW; Karpinska B; Quain MD; Makgopa EM; Kunert K; Foyer CH
    Ann Bot; 2015 Sep; 116(4):497-510. PubMed ID: 25851140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytochrome-mediated delay of plastid senescence in mustard cotyledons: changes in pigment contents and ultrastructure.
    Biswal UC; Bergfeld R; Kasemir H
    Planta; 1983 Feb; 157(1):85-90. PubMed ID: 24263949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription.
    Sakuraba Y; Han SH; Lee SH; Hörtensteiner S; Paek NC
    Plant Cell Rep; 2016 Jan; 35(1):155-66. PubMed ID: 26441053
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence.
    Cordon G; Lagorio MG; Paruelo JM
    J Plant Physiol; 2016 Jul; 199():100-110. PubMed ID: 27302011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence.
    Kusaba M; Ito H; Morita R; Iida S; Sato Y; Fujimoto M; Kawasaki S; Tanaka R; Hirochika H; Nishimura M; Tanaka A
    Plant Cell; 2007 Apr; 19(4):1362-75. PubMed ID: 17416733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The senescence of oat leaf segments is promoted under simulated microgravity condition on a three-dimensional clinostat.
    Miyamoto K; Oka M; Ueda J; Hoson T; Kamisaka S
    Biol Sci Space; 1995 Dec; 9(4):327-30. PubMed ID: 11541893
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A cellular timetable of autumn senescence.
    Keskitalo J; Bergquist G; Gardeström P; Jansson S
    Plant Physiol; 2005 Dec; 139(4):1635-48. PubMed ID: 16299183
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differences in gene expression between natural and artificially induced leaf senescence in barley.
    Springer A; Acker G; Bartsch S; Bauerschmitt H; Reinbothe S; Reinbothe C
    J Plant Physiol; 2015 Mar; 176():180-91. PubMed ID: 25637827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Patterns of ehtylene production in senescing leaves.
    Aharoni N; Lieberman M
    Plant Physiol; 1979 Nov; 64(5):796-800. PubMed ID: 16661056
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of ANAC072 in the regulation of chlorophyll degradation during age- and dark-induced leaf senescence.
    Li S; Gao J; Yao L; Ren G; Zhu X; Gao S; Qiu K; Zhou X; Kuai B
    Plant Cell Rep; 2016 Aug; 35(8):1729-41. PubMed ID: 27154758
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phytochrome and hormone control of polypeptides synthesized by chloroplasts of senescent barley leaves.
    Quiles MJ; Cuello J; Sabater B
    Rev Esp Fisiol; 1990 Sep; 46(3):279-82. PubMed ID: 2091152
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum.
    Roca M; James C; Pruzinská A; Hörtensteiner S; Thomas H; Ougham H
    Phytochemistry; 2004 May; 65(9):1231-8. PubMed ID: 15184007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley.
    Janečková H; Husičková A; Lazár D; Ferretti U; Pospíšil P; Špundová M
    Plant Physiol Biochem; 2019 Mar; 136():43-51. PubMed ID: 30639921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.