BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16659215)

  • 1. Auxin and the response of pea roots to auxin transport inhibitors: morphactin.
    Gaither DH
    Plant Physiol; 1975 Jun; 55(6):1082-6. PubMed ID: 16659215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sites of auxin action: regulation of geotropism, growth, and ethylene production by inhibitors of auxin transport.
    Gaither DH
    Plant Physiol; 1975 Sep; 56(3):404-9. PubMed ID: 16659313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory action of auxin on root elongation not mediated by ethylene.
    Eliasson L; Bertell G; Bolander E
    Plant Physiol; 1989 Sep; 91(1):310-4. PubMed ID: 16667017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Ethylene and 2,4-Dichlorophenoxyacetic Acid on Cellular Expansion in Pisum sativum.
    Apelbaum A; Burg SP
    Plant Physiol; 1972 Jul; 50(1):125-31. PubMed ID: 16658106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The action of specific inhibitors of auxin transport on uptake of auxin and binding of N-1-naphthylphthalamic acid to a membrane site in maize coleoptiles.
    Sussman MR; Goldsmith MH
    Planta; 1981 May; 152(1):13-8. PubMed ID: 24302312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On ethylene and stem elongation in green pea seedlings.
    Koch BL; Moore TC
    Plant Physiol; 1990 Aug; 93(4):1663-4. PubMed ID: 16667672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin transport in intact pea seedlings (Pisum sativum L.): The inhibition of transport by 2,3,5-triiodobenzoic acid.
    Morris DA; Kadir GO; Barry AJ
    Planta; 1973 Jun; 110(2):173-82. PubMed ID: 24474345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors.
    Lee JS; Mulkey TJ; Evans ML
    Planta; 1984 May; 160(6):536-43. PubMed ID: 24258781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The specificity of auxin transport in intact pea seedlings (Pisum sativum L.).
    Morris DA; Thomas AG
    Planta; 1974 Sep; 118(3):225-34. PubMed ID: 24442326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid effects of indoleacetic Acid and ethylene on the growth of intact pea roots.
    Rauser WE; Horton RF
    Plant Physiol; 1975 Mar; 55(3):443-7. PubMed ID: 16659098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem.
    Morris DA; Johnson CF
    Planta; 1990 Apr; 181(1):117-24. PubMed ID: 24196683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Components of auxin transport in stem segments of Pisum sativum L.
    Davies PJ; Rubery PH
    Planta; 1978 Jan; 142(2):211-9. PubMed ID: 24408105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: inhibition of polar auxin transport in intact plants and stem segments.
    Morris DA; Johnson CF
    Planta; 1987 Nov; 172(3):408-16. PubMed ID: 24225926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxin transport: a new synthetic inhibitor.
    Beyer EM
    Plant Physiol; 1972 Sep; 50(3):322-7. PubMed ID: 16658167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development.
    Qin H; Zhang Z; Wang J; Chen X; Wei P; Huang R
    PLoS Genet; 2017 Aug; 13(8):e1006955. PubMed ID: 28829777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers.
    Lewis DR; Negi S; Sukumar P; Muday GK
    Development; 2011 Aug; 138(16):3485-95. PubMed ID: 21771812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the Involvement of Auxin, Ethylene and ROS Signaling During Primary Root Inhibition of Arabidopsis by the Allelochemical Benzoic Acid.
    Zhang W; Lu LY; Hu LY; Cao W; Sun K; Sun QB; Siddikee A; Shi RH; Dai CC
    Plant Cell Physiol; 2018 Sep; 59(9):1889-1904. PubMed ID: 29893960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Interaction between Auxin and Nitric Oxide Regulates Root Growth in Response to Iron Deficiency in Rice.
    Sun H; Feng F; Liu J; Zhao Q
    Front Plant Sci; 2017; 8():2169. PubMed ID: 29312409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polar transport and accumulation of indole-3-acetic acid during root regeneration by Pinus lambertiana embryos.
    Greenwood MS; Goldsmith MH
    Planta; 1970 Dec; 95(4):297-313. PubMed ID: 24497144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gibberellins modulate local auxin biosynthesis and polar auxin transport by negatively affecting flavonoid biosynthesis in the root tips of rice.
    Li J; Yang Y; Chai M; Ren M; Yuan J; Yang W; Dong Y; Liu B; Jian Q; Wang S; Peng B; Yuan H; Fan H
    Plant Sci; 2020 Sep; 298():110545. PubMed ID: 32771158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.