These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16659276)

  • 1. Acetylene reduction (nitrogen fixation) and metabolic activities of soybean having various leaf and nodule water potentials.
    Huang CY; Boyer JS; Vanderhoef LN
    Plant Physiol; 1975 Aug; 56(2):222-7. PubMed ID: 16659276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitation of acetylene reduction (nitrogen fixation) by photosynthesis in soybean having low water potentials.
    Huang CY; Boyer JS; Vanderhoef LN
    Plant Physiol; 1975 Aug; 56(2):228-32. PubMed ID: 16659277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of changes in shoot carbon-exchange rate on soybean root nodule activity.
    Williams LE; Dejong TM; Phillips DA
    Plant Physiol; 1982 Feb; 69(2):432-6. PubMed ID: 16662224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between Ureide N and N(2) Fixation, Aboveground N Accumulation, Acetylene Reduction, and Nodule Mass in Greenhouse and Field Studies with Glycine max L. (Merr).
    van Berkum P; Sloger C; Weber DF; Cregan PB; Keyser HH
    Plant Physiol; 1985 Jan; 77(1):53-8. PubMed ID: 16664027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean.
    Boyer JS
    Plant Physiol; 1970 Aug; 46(2):236-9. PubMed ID: 16657442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nodule activity and allocation of photosynthate of soybean during recovery from water stress.
    Fellows RJ; Patterson RP; Raper CD; Harris D
    Plant Physiol; 1987 May; 84(1):456-60. PubMed ID: 11539766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials.
    Boyer JS
    Plant Physiol; 1970 Aug; 46(2):233-5. PubMed ID: 16657441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon exchange rates of shoots required to utilize available acetylene reduction capacity in soybean and alfalfa root nodules.
    Sheehy JE; Fishbeck KA; Dejong TM; Williams LE; Phillips DA
    Plant Physiol; 1980 Jul; 66(1):101-4. PubMed ID: 16661368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypernodulating soybean mutant line nod4 lacking 'Autoregulation of Nodulation' (AON) has limited root-to-shoot water transport capacity.
    Caroline Silva Lopes E; Pereira Rodrigues W; Ruas Fraga K; Machado Filho JA; Rangel da Silva J; Menezes de Assis-Gomes M; Moura Assis Figueiredo FAM; Gresshoff PM; Campostrini E
    Ann Bot; 2019 Nov; 124(6):979-991. PubMed ID: 30955042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials.
    Pallas JE; Michel BE; Harris DG
    Plant Physiol; 1967 Jan; 42(1):76-88. PubMed ID: 16656488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of soybean nitrogen fixation in response to rhizosphere oxygen: I. Role of nodule respiration.
    Weisz PR; Sinclair TR
    Plant Physiol; 1987 Jul; 84(3):900-5. PubMed ID: 16665541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of nitrogen assimilation in seed development of soybean.
    Nelson DR; Bellville RJ; Porter CA
    Plant Physiol; 1984 Jan; 74(1):128-33. PubMed ID: 16663366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of photosynthesis in sunflower after a period of low leaf water potential.
    Boyer JS
    Plant Physiol; 1971 Jun; 47(6):816-20. PubMed ID: 16657711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period].
    Schulze ED; Lange OL; Koch W
    Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Problems of the acetylene reduction technique applied to water-saturated paddy soils.
    Lee KK; Watanabe I
    Appl Environ Microbiol; 1977 Dec; 34(6):654-60. PubMed ID: 16345257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous, automated acetylene reduction assays using intact plants.
    Mederski HJ; Streeter JG
    Plant Physiol; 1977 Jun; 59(6):1076-81. PubMed ID: 16659997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids.
    King CA; Purcell LC
    Plant Physiol; 2005 Apr; 137(4):1389-96. PubMed ID: 15778462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymes of ammonia assimilation and ureide biosynthesis in soybean nodules: effect of nitrate.
    Schuller KA; Day DA; Gibson AH; Gresshoff PM
    Plant Physiol; 1986 Mar; 80(3):646-50. PubMed ID: 16664678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine-Glomus-Bradyrhizobium Symbiosis : X. Relationships between Leaf Gas Exchange and Plant and Soil Water Status in Nodulated, Mycorrhizal Soybean under Drought Stress.
    Bethlenfalvay GJ; Brown MS; Franson RL
    Plant Physiol; 1990 Oct; 94(2):723-8. PubMed ID: 16667771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.