BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16659693)

  • 1. Regulation of malate oxidation in isolated mung bean mitochondria: I. Effects of oxaloacetate, pyruvate, and thiamine pyrophosphate.
    Bowman EJ; Ikuma H
    Plant Physiol; 1976 Sep; 58(3):433-7. PubMed ID: 16659693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Citric Acid cycle activity in mitochondria isolated from mung bean hypocotyls.
    Bowman EJ; Ikuma H; Stein HJ
    Plant Physiol; 1976 Sep; 58(3):426-32. PubMed ID: 16659692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenine nucleotide regulation of malate oxidation in isolated mung bean hypocotyl mitochondria.
    Tobin AK; Givan CV
    Plant Physiol; 1984 Sep; 76(1):21-5. PubMed ID: 16663800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic processes in cytoplasmic particles of the avocado fruit. IX. The oxidation of pyruvate and malate during the climacteric cycle.
    Lance C; Hobson GE; Young RE; Biale JB
    Plant Physiol; 1967 Apr; 42(4):471-8. PubMed ID: 6042356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of NAD on Malate Oxidation in Intact Plant Mitochondria.
    Tobin A; Djerdjour B; Journet E; Neuburger M; Douce R
    Plant Physiol; 1980 Aug; 66(2):225-9. PubMed ID: 16661409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Malate Oxidation in Isolated Mung Bean Mitochondria: II. Role of Adenylates.
    Bowman EJ; Ikuma H
    Plant Physiol; 1976 Sep; 58(3):438-46. PubMed ID: 16659694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of phosphoenolpyruvate and oxaloacetate on ca uptake by isolated mung bean mitochondria.
    Graesser RJ
    Plant Physiol; 1977 Feb; 59(2):126-8. PubMed ID: 16659800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of rotenoids on isolated plant mitochondria.
    Ravanel P; Tissut M; Douce R
    Plant Physiol; 1984 Jun; 75(2):414-20. PubMed ID: 16663636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of pyruvate and malate by isolated fat-cell mitochondria.
    Martin BR; Denton RM
    Biochem J; 1971 Nov; 125(1):105-13. PubMed ID: 5158897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activities of pyruvate dehydrogenase, enzymes of citric acid cycle, and aminotransferases in the subcellular fractions of cerebral cortex in normal and hyperammonemic rats.
    Ratnakumari L; Murthy CR
    Neurochem Res; 1989 Mar; 14(3):221-8. PubMed ID: 2725822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic channeling of oxaloacetate in a fusion protein of porcine citrate synthase and porcine mitochondrial malate dehydrogenase.
    Shatalin K; Lebreton S; Rault-Leonardon M; VĂ©lot C; Srere PA
    Biochemistry; 1999 Jan; 38(3):881-9. PubMed ID: 9893982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue.
    Patel MS; Jomain-Baum M; Ballard FJ; Hanson RW
    J Lipid Res; 1971 Mar; 12(2):179-91. PubMed ID: 4396562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria.
    Neuburger M; Douce R
    Biochim Biophys Acta; 1980 Feb; 589(2):176-89. PubMed ID: 7356982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate.
    Morgunov I; Srere PA
    J Biol Chem; 1998 Nov; 273(45):29540-4. PubMed ID: 9792662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion.
    MacDonald MJ
    J Biol Chem; 1995 Aug; 270(34):20051-8. PubMed ID: 7650022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure.
    Wilkins HM; Koppel S; Carl SM; Ramanujan S; Weidling I; Michaelis ML; Michaelis EK; Swerdlow RH
    J Neurochem; 2016 Apr; 137(1):76-87. PubMed ID: 26811028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between pyruvate carboxylase and other mitochondrial enzymes.
    Fahien LA; Davis JW; Laboy J
    J Biol Chem; 1993 Aug; 268(24):17935-42. PubMed ID: 8349677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Citrate formation by rat lung mitochondrial preparations.
    Evans RM; Scholz RW
    Biochim Biophys Acta; 1975 Feb; 381(2):278-91. PubMed ID: 1111591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of metabolites between the cytosolic and mitochondrial compartments of hepatocytes isolated from fed rats.
    Siess EA; Brocks DG; Wieland OH
    Hoppe Seylers Z Physiol Chem; 1978 Jul; 359(7):785-98. PubMed ID: 680639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.