These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16659721)

  • 1. Water Relations and Photosynthesis of a Desert CAM Plant, Agave deserti.
    Nobel PS
    Plant Physiol; 1976 Oct; 58(4):576-82. PubMed ID: 16659721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado desert.
    Nobel PS
    Oecologia; 1977 Jun; 27(2):117-133. PubMed ID: 28309721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of root distribution and growth on predicted water uptake and interspecific competition.
    Franco AC; Nobel PS
    Oecologia; 1990 Feb; 82(2):151-157. PubMed ID: 28312658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance Analysis of Nocturnal Carbon Dioxide Uptake by a Crassulacean Acid Metabolism Succulent, Agave deserti.
    Nobel PS; Hartsock TL
    Plant Physiol; 1978 Apr; 61(4):510-4. PubMed ID: 16660326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root distribution and seasonal production in the northwestern Sonoran Desert for a C3 subshrub, a C4 bunchgrass, and a CAM leaf succulent.
    Nobel P
    Am J Bot; 1997 Jul; 84(7):949. PubMed ID: 21708649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root deployment and shoot growth for two desert species in response to soil rockiness.
    Martre P; North GB; Bobich EG; Nobel PS
    Am J Bot; 2002 Dec; 89(12):1933-9. PubMed ID: 21665622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental Influences on Open Stomates of a Crassulacean Acid Metabolism Plant, Agave deserti.
    Nobel PS; Hartsock TL
    Plant Physiol; 1979 Jan; 63(1):63-6. PubMed ID: 16660695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The "Kluge-Lüttge Kammer": a preliminary evaluation of an enclosed, Crassulacean acid metabolism (CAM) Mesocosm that allows separation of synchronized and desynchronized contributions of plants to whole system gas exchange.
    Rascher U; Bobich EG; Osmond CB
    Plant Biol (Stuttg); 2006 Jan; 8(1):167-74. PubMed ID: 16435279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of plant temperature and water loss by the desert succulent, Agave deserti.
    Woodhouse RM; Williams JG; Nobel PS
    Oecologia; 1983 Mar; 57(3):291-297. PubMed ID: 28309353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature, water, and PAR influences on predicted and measured productivity of Agave deserti at various elevations.
    Nobel PS; Hartsock TL
    Oecologia; 1986 Jan; 68(2):181-185. PubMed ID: 28310125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Day-Night Variations in Malate Concentration, Osmotic Pressure, and Hydrostatic Pressure in Cereus validus.
    Lüttge U; Nobel PS
    Plant Physiol; 1984 Jul; 75(3):804-7. PubMed ID: 16663708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela: VI. Water relations and gas exchange of mangroves.
    Smith JAC; Popp M; Lüttge U; Cram WJ; Diaz M; Griffiths H; Lee HSJ; Medina E; Schäfer C; Stimmel KH; Thonke B
    New Phytol; 1989 Feb; 111(2):293-307. PubMed ID: 33874250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period].
    Schulze ED; Lange OL; Koch W
    Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root-soil contact for the desert succulent Agave deserti in wet and drying soil.
    North GB; Nobel PS
    New Phytol; 1997 Jan; 135(1):21-29. PubMed ID: 33863144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microhabitat, water relations, and photosynthesis of a desert fern, Notholaena parryi.
    Nobel PS
    Oecologia; 1978 Jan; 31(3):293-309. PubMed ID: 28309740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Productivity of Agave deserti: measurement by dry weight and monthly prediction using physiological responses to environmental parameters.
    Nobel PS
    Oecologia; 1984 Sep; 64(1):1-7. PubMed ID: 28311630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited photosynthetic plasticity in the leaf-succulent CAM plant Agave angustifolia grown at different temperatures.
    Holtum JAM; Winter K
    Funct Plant Biol; 2014 Aug; 41(8):843-849. PubMed ID: 32481038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme temperatures and thermal tolerances for seedlings of desert succulents.
    Nobel PS
    Oecologia; 1984 Jun; 62(3):310-317. PubMed ID: 28310883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana.
    Gross SM; Martin JA; Simpson J; Abraham-Juarez MJ; Wang Z; Visel A
    BMC Genomics; 2013 Aug; 14():563. PubMed ID: 23957668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.