These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16659721)

  • 21. Crassulacean Acid Metabolism in the Succulent C(4) Dicot, Portulaca oleracea L Under Natural Environmental Conditions.
    Koch KE; Kennedy RA
    Plant Physiol; 1982 Apr; 69(4):757-61. PubMed ID: 16662291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C(3) Photosynthesis and Crassulacean Acid Metabolism in a Kansas Rock Outcrop Succulent, Talinum calycinum Engelm. (Portulacaceae).
    Martin CE; Zee AK
    Plant Physiol; 1983 Nov; 73(3):718-23. PubMed ID: 16663289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loss of water transport capacity due to xylem cavitation in roots of two CAM succulents.
    Linton MJ; Nobel PS
    Am J Bot; 1999 Nov; 86(11):1538-43. PubMed ID: 10562245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant transpiration at high elevations: Theory, field measurements, and comparisons with desert plants.
    Smith WK; Geller GN
    Oecologia; 1979 Jul; 41(1):109-122. PubMed ID: 28310364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ecophysiological Significance of CO(2)-Recycling via Crassulacean Acid Metabolism in Talinum calycinum Engelm. (Portulacaceae).
    Martin CE; Higley M; Wang WZ
    Plant Physiol; 1988 Feb; 86(2):562-8. PubMed ID: 16665946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials.
    Pallas JE; Michel BE; Harris DG
    Plant Physiol; 1967 Jan; 42(1):76-88. PubMed ID: 16656488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave.
    Yin H; Guo HB; Weston DJ; Borland AM; Ranjan P; Abraham PE; Jawdy SS; Wachira J; Tuskan GA; Tschaplinski TJ; Wullschleger SD; Guo H; Hettich RL; Gross SM; Wang Z; Visel A; Yang X
    BMC Genomics; 2018 Aug; 19(1):588. PubMed ID: 30081833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases.
    Owen NA; Griffiths H
    New Phytol; 2013 Dec; 200(4):1116-31. PubMed ID: 23992169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization theory explains nighttime stomatal responses.
    Wang Y; Anderegg WRL; Venturas MD; Trugman AT; Yu K; Frankenberg C
    New Phytol; 2021 May; 230(4):1550-1561. PubMed ID: 33576001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Root-stem junctions of a desert monocotyledon and a dicotyledon: hydraulic consequences under wet conditions and during drought.
    Ewers FW; North GB; Nobelf PS
    New Phytol; 1992 Jul; 121(3):377-385. PubMed ID: 33874157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfur dioxide effects on plants exhibiting Crassulacean Acid Metabolism.
    Olszyk DM; Bytnerowicz A; Fox CA
    Environ Pollut; 1987; 43(1):47-62. PubMed ID: 15092814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A single leaf of Camellia oleifera has two types of carbon assimilation pathway, C(3) and crassulacean acid metabolism.
    Yuan M; Xu F; Wang SD; Zhang DW; Zhang ZW; Cao Y; Xu XC; Luo MH; Yuan S
    Tree Physiol; 2012 Feb; 32(2):188-99. PubMed ID: 22337600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photosynthesis and water relations of the floodplain tree, boxelder (Acer negundo L.).
    Foster JR
    Tree Physiol; 1992 Sep; 11(2):133-49. PubMed ID: 14969957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.
    Romero P; Botía P; Keller M
    J Plant Physiol; 2017 Sep; 216():58-73. PubMed ID: 28577386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short-Term and Long-Term Responses of Crassulacean Acid Metabolism Plants to Elevated CO(2).
    Nobel PS; Hartsock TL
    Plant Physiol; 1986 Oct; 82(2):604-6. PubMed ID: 16665077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced plant water status under sub-ambient pCO2 limits plant productivity in the wild progenitors of C3 and C4 cereals.
    Cunniff J; Charles M; Jones G; Osborne CP
    Ann Bot; 2016 Nov; 118(6):1163-1173. PubMed ID: 27578764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions.
    Hartzell S; Bartlett MS; Inglese P; Consoli S; Yin J; Porporato A
    Plant Cell Environ; 2021 Jan; 44(1):34-48. PubMed ID: 33073369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photosynthesis affects following night leaf conductance in Vicia faba.
    Easlon HM; Richards JH
    Plant Cell Environ; 2009 Jan; 32(1):58-63. PubMed ID: 19076531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecophysiological studies of Sonoran Desert plants : III. The daily course of photosynthesis for Acacia greggii and Cercidium microphyllum.
    Szarek SR; Woodhouse RM
    Oecologia; 1978 Jan; 35(3):285-294. PubMed ID: 28310274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of Crassulacean Acid Metabolism in the Succulent C(4) Dicot, Portulaca oleracea L.
    Koch K; Kennedy RA
    Plant Physiol; 1980 Feb; 65(2):193-7. PubMed ID: 16661159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.