BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16659921)

  • 1. Estimation of Osmotic Gradients in Soybean Sieve Tubes by Quantitative Autoradiography: Qualified Support for the MUnch Hypothesis.
    Housley TL; Fisher DB
    Plant Physiol; 1977 Apr; 59(4):701-6. PubMed ID: 16659921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of the Münch hypothesis for phloem transport in soybean.
    Fisher DB
    Planta; 1978 Jan; 139(1):25-8. PubMed ID: 24414101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mathematical Treatment of Munch's Pressure-Flow Hypothesis of Phloem Translocation.
    Christy AL; Ferrier JM
    Plant Physiol; 1973 Dec; 52(6):531-8. PubMed ID: 16658599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solute distribution in sugar beet leaves in relation to Phloem loading and translocation.
    Geiger DR; Giaquinta RT; Sovonick SA; Fellows RJ
    Plant Physiol; 1973 Dec; 52(6):585-9. PubMed ID: 16658610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurements of sieve element hydrostatic pressure reveal strong regulation after pathway blockage.
    Gould N; Minchin PEH; Thorpe MR
    Funct Plant Biol; 2004 Nov; 31(10):987-993. PubMed ID: 32688967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradients in water potential and turgor pressure along the translocation pathway during grain filling in normally watered and water-stressed wheat plants.
    Fisher DB; Cash-Clark CE
    Plant Physiol; 2000 May; 123(1):139-48. PubMed ID: 10806232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of C-photosynthate translocation in morning glory vines.
    Christy AL; Fisher DB
    Plant Physiol; 1978 Feb; 61(2):283-90. PubMed ID: 16660277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the Münch hypothesis of long distance phloem transport in plants.
    Knoblauch M; Knoblauch J; Mullendore DL; Savage JA; Babst BA; Beecher SD; Dodgen AC; Jensen KH; Holbrook NM
    Elife; 2016 Jun; 5():. PubMed ID: 27253062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Münch's adaptation of Pfeffer's circulating water flow became the pressure-flow theory, and the resulting problems - A historical perspective.
    Peters WS; Knoblauch M
    J Plant Physiol; 2022 May; 272():153672. PubMed ID: 35366573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.
    Komor E; Orlich G; Weig A; Köckenberger W
    J Exp Bot; 1996 Aug; 47 Spec No():1155-64. PubMed ID: 21245244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phloem hydrostatic pressure relates to solute loading rate: a direct test of the Münch hypothesis.
    Gould N; Thorpe MR; Koroleva O; Minchin PEH
    Funct Plant Biol; 2005 Nov; 32(11):1019-1026. PubMed ID: 32689197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport.
    Thompson MV; Holbrook NM
    J Theor Biol; 2003 Feb; 220(4):419-55. PubMed ID: 12623280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phloem transport in Ricinus: Concentration gradients between source and sink.
    Milburn JA
    Planta; 1974 Dec; 117(4):303-19. PubMed ID: 24458461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simpler iterative steady state solution of münch pressure-flow systems applied to long and short translocation paths.
    Tyree MT; Christy AL; Ferrier JM
    Plant Physiol; 1974 Oct; 54(4):589-600. PubMed ID: 16658935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of sieve tube turgor pressure using severed aphid stylets.
    Wright JP; Fisher DB
    Plant Physiol; 1980 Jun; 65(6):1133-5. PubMed ID: 16661346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation and accumulation of translocate in the sugar beet petiole.
    Geiger DR; Saunders MA; Cataldo DA
    Plant Physiol; 1969 Dec; 44(12):1657-65. PubMed ID: 16657254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Physiological Changes in Sugar Beet Leaves during Sink to Source Conversion.
    Fellows RJ; Geiger DR
    Plant Physiol; 1974 Dec; 54(6):877-85. PubMed ID: 16658993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the volumetric elastic modulus and membrane hydraulic conductivity of willow sieve tubes.
    Wright JP; Fisher DB
    Plant Physiol; 1983 Dec; 73(4):1042-7. PubMed ID: 16663326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize.
    Westgate ME; Boyer JS
    Planta; 1985 Jul; 164(4):540-9. PubMed ID: 24248230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sucrose transport into the phloem of Ricinus communis L. seedlings as measured by the analysis of sieve-tube sap.
    Kallarackal J; Orlich G; Schobert C; Komor E
    Planta; 1989 Mar; 177(3):327-35. PubMed ID: 24212425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.