These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 16660223)
1. Seasonal Variation of Glutathione and Glutathione Reductase in Needles of Picea abies. Esterbauer H; Grill D Plant Physiol; 1978 Jan; 61(1):119-21. PubMed ID: 16660223 [TBL] [Abstract][Full Text] [Related]
2. Antioxidants and Manganese Deficiency in Needles of Norway Spruce (Picea abies L.) Trees. Polle A; Chakrabarti K; Chakrabarti S; Seifert F; Schramel P; Rennenberg H Plant Physiol; 1992 Jul; 99(3):1084-9. PubMed ID: 16668974 [TBL] [Abstract][Full Text] [Related]
3. The influence of ozone on the winter hardiness of Norway spruce [Picea abies (L.) Karst.]. Barnes JD; Davison AW New Phytol; 1988 Feb; 108(2):159-166. PubMed ID: 33874166 [TBL] [Abstract][Full Text] [Related]
4. Glutathione status and glutathione reductase activity in spruce needles of healthy and damaged trees at two mountain sites. Schmieden U; Schneider S; Wild A Environ Pollut; 1993; 82(3):239-44. PubMed ID: 15091772 [TBL] [Abstract][Full Text] [Related]
5. Seasonal variation in photochemical activity and hardiness in clones of Norway spruce (Picea abies). Westin J; Sundblad LG; Hällgren JE Tree Physiol; 1995 Oct; 15(10):685-9. PubMed ID: 14966003 [TBL] [Abstract][Full Text] [Related]
6. Significance of ozone exposure for inter-annual differences in primary metabolites of old-growth beech (Fagus sylvatica L.) and Norway spruce (Picea abies L.) trees in a mixed forest stand. Alexou M; Hofer N; Liu X; Rennenberg H; Haberer K Plant Biol (Stuttg); 2007 Mar; 9(2):227-41. PubMed ID: 17357017 [TBL] [Abstract][Full Text] [Related]
7. Effects of elevated pCO2 and/or pO3 on C-, N-, and S-metabolites in the leaves of juvenile beech and spruce differ between trees grown in monoculture and mixed culture. Liu XP; Grams TE; Matyssek R; Rennenberg H Plant Physiol Biochem; 2005 Feb; 43(2):147-54. PubMed ID: 15820662 [TBL] [Abstract][Full Text] [Related]
8. Seasonal changes in antioxidants in red spruce as affected by ozone. Hausladen A; Madamanchi NR; Fellows S; Alscher RG; Amundson RG New Phytol; 1990 Jul; 115(3):447-458. PubMed ID: 33874275 [TBL] [Abstract][Full Text] [Related]
9. Minimum cuticular conductance and cuticle features of Picea abies and Pinus cembra needles along an altitudinal gradient in the Dolomites (NE Italian Alps). Anfodillo T; Pasqua di Bisceglie D; Urso T Tree Physiol; 2002 May; 22(7):479-87. PubMed ID: 11986051 [TBL] [Abstract][Full Text] [Related]
10. Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce [Picea abies (L) Karst] needles under sunlight irradiation. Niu J; Chen J; Martens D; Quan X; Yang F; Kettrup A; Schramm KW Environ Pollut; 2003; 123(1):39-45. PubMed ID: 12663204 [TBL] [Abstract][Full Text] [Related]
11. Composition and Properties of Hydrogen Peroxide Decomposing Systems in Extracellular and Total Extracts from Needles of Norway Spruce (Picea abies L., Karst.). Polle A; Chakrabarti K; Schürmann W; Renneberg H Plant Physiol; 1990 Sep; 94(1):312-9. PubMed ID: 16667703 [TBL] [Abstract][Full Text] [Related]
12. Seasonal dynamics of polysaccharides in Norway spruce (Picea abies). Makarova EN; Shakhmatov EG; Belyy VA Carbohydr Polym; 2017 Feb; 157():686-694. PubMed ID: 27987979 [TBL] [Abstract][Full Text] [Related]
13. Tree- and needle-age-dependent variations in antioxidants and photoprotective pigments in Norway spruce needles at the alpine timberline. Tegischer K; Tausz M; Wieser G; Grill D Tree Physiol; 2002 Jun; 22(8):591-6. PubMed ID: 12045031 [TBL] [Abstract][Full Text] [Related]
14. Cell structural changes in the mesophyll of Norway spruce needles by elevated ozone and elevated temperature in open-field exposure during cold acclimation. Kivimäenpää M; Riikonen J; Sutinen S; Holopainen T Tree Physiol; 2014 Apr; 34(4):389-403. PubMed ID: 24718738 [TBL] [Abstract][Full Text] [Related]
15. Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis. Belmonte MF; Stasolla C Plant Physiol Biochem; 2009 Oct; 47(10):904-11. PubMed ID: 19570687 [TBL] [Abstract][Full Text] [Related]
16. Stilbene biosynthesis in the needles of spruce Picea jezoensis. Kiselev KV; Grigorchuk VP; Ogneva ZV; Suprun AR; Dubrovina AS Phytochemistry; 2016 Nov; 131():57-67. PubMed ID: 27576046 [TBL] [Abstract][Full Text] [Related]
17. Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along a European transect. Bauer G; Schulze ED; Mund M Tree Physiol; 1997 Dec; 17(12):777-86. PubMed ID: 14759887 [TBL] [Abstract][Full Text] [Related]
18. Cold-hardiness-specific glutathione reductase isozymes in red spruce. Thermal dependence of kinetic parameters and possible regulatory mechanisms. Hausladen A; Alscher RG Plant Physiol; 1994 May; 105(1):215-23. PubMed ID: 8029351 [TBL] [Abstract][Full Text] [Related]
19. Susceptibility to low-temperature photoinhibition in three conifers differing in successional status. Robakowski P Tree Physiol; 2005 Sep; 25(9):1151-60. PubMed ID: 15996958 [TBL] [Abstract][Full Text] [Related]