BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16660323)

  • 1. Enzymology of Glutamine Metabolism Related to Senescence and Seed Development in the Pea (Pisum sativum L.).
    Storey R; Beevers L
    Plant Physiol; 1978 Apr; 61(4):494-500. PubMed ID: 16660323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteolytic activity in relationship to senescence and cotyledonary development in Pisum sativum L.
    Storey R; Beevers L
    Planta; 1977 Jan; 137(1):37-44. PubMed ID: 24420515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate Synthetase in Developing Cotyledons of Pisum sativum.
    Beevers L; Storey R
    Plant Physiol; 1976 Jun; 57(6):862-6. PubMed ID: 16659586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Activities of Enzymes of Nitrogen Metabolism in Seedcoats and Cotyledons during Embryo Development in Pea Seeds.
    Murray DR
    Plant Physiol; 1980 Oct; 66(4):782-6. PubMed ID: 16661521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.) : III. Enzymology and transport of amino acids from senescing flag leaves.
    Simpson RJ; Dalling MJ
    Planta; 1981 May; 151(5):447-56. PubMed ID: 24302110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Role for Glutamine Synthetase in the Remobilization of Leaf Nitrogen during Natural Senescence in Rice Leaves.
    Kamachi K; Yamaya T; Mae T; Ojima K
    Plant Physiol; 1991 Jun; 96(2):411-7. PubMed ID: 16668201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of the amide groups of asparagine and 2-hydroxysuccinamic Acid by young pea leaves.
    Ta TC; Joy KW; Ireland RJ
    Plant Physiol; 1984 Jul; 75(3):527-30. PubMed ID: 16663659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen nutrition and metabolic interconversions of nitrogenous solutes in developing cowpea fruits.
    Peoples MB; Atkins CA; Pate JS; Murray DR
    Plant Physiol; 1985 Feb; 77(2):382-8. PubMed ID: 16664063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence.
    Avila-Ospina L; Marmagne A; Talbotec J; Krupinska K; Masclaux-Daubresse C
    J Exp Bot; 2015 Apr; 66(7):2013-26. PubMed ID: 25697791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino Acid transport and metabolism in relation to the nitrogen economy of a legume leaf.
    Atkins CA; Pate JS; Peoples MB; Joy KW
    Plant Physiol; 1983 Apr; 71(4):841-8. PubMed ID: 16662917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMINO ACID AND AMIDE METABOLISM IN THE HULLS AND SEEDS OF DEVELOPING FRUITS OF GARDEN PEA, PISUM SATIVUM L.: III. HOMOSERINE.
    Murray DR
    New Phytol; 1985 Nov; 101(3):377-385. PubMed ID: 33874233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula.
    Glevarec G; Bouton S; Jaspard E; Riou MT; Cliquet JB; Suzuki A; Limami AM
    Planta; 2004 Jun; 219(2):286-97. PubMed ID: 14991406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from Micropterus salmoides. Purification, properties, and inhibition by glutamine analogs.
    Casey CA; Anderson PM
    J Biol Chem; 1983 Jul; 258(14):8723-32. PubMed ID: 6602805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic Pod Wall of Pea (Pisum sativum L.): Distribution of Carbon Dioxide-fixing Enzymes in Relation to Pod Structure.
    Atkins CA; Kuo J; Pate JS
    Plant Physiol; 1977 Nov; 60(5):779-86. PubMed ID: 16660184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asparagine synthesis in pea leaves, and the occurrence of an asparagine synthetase inhibitor.
    Joy KW; Ireland RJ; Lea PJ
    Plant Physiol; 1983 Sep; 73(1):165-8. PubMed ID: 16663168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomic, physiological and biochemical analysis of cotyledon, embryo, leaf and pod reveals the effects of high temperature and humidity stress on seed vigor formation in soybean.
    Wei J; Liu X; Li L; Zhao H; Liu S; Yu X; Shen Y; Zhou Y; Zhu Y; Shu Y; Ma H
    BMC Plant Biol; 2020 Mar; 20(1):127. PubMed ID: 32216758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue Distribution of Glutamate Synthase and Glutamine Synthetase in Rice Leaves : Occurrence of NADH-Dependent Glutamate Synthase Protein and Activity in the Unexpanded, Nongreen Leaf Blades.
    Yamaya T; Hayakawa T; Tanasawa K; Kamachi K; Mae T; Ojima K
    Plant Physiol; 1992 Nov; 100(3):1427-32. PubMed ID: 16653141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue and Cellular Distribution of Glutamine Synthetase in Roots of Pea (Pisum sativum) Seedlings.
    Vézina LP; Langlois JR
    Plant Physiol; 1989 Jul; 90(3):1129-33. PubMed ID: 16666862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves.
    Silveira JA; Viégas Rde A; da Rocha IM; Moreira AC; Moreira Rde A; Oliveira JT
    J Plant Physiol; 2003 Feb; 160(2):115-23. PubMed ID: 12685027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamine synthetase activity in leaves of Zea mays L. as influenced by magnesium status.
    Jezek M; Geilfus CM; Mühling KH
    Planta; 2015 Dec; 242(6):1309-19. PubMed ID: 26202737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.