These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16660386)

  • 1. Organic Acid Metabolism by Isolated Rhizobium japonicum Bacteroids.
    Stovall I; Cole M
    Plant Physiol; 1978 May; 61(5):787-90. PubMed ID: 16660386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeling of Carbon Pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv viciae Bacteroids following Incubation of Intact Nodules with CO(2).
    Salminen SO; Streeter JG
    Plant Physiol; 1992 Oct; 100(2):597-604. PubMed ID: 16653034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymes of Poly-(beta)-Hydroxybutyrate Metabolism in Soybean and Chickpea Bacteroids.
    Kim SA; Copeland L
    Appl Environ Microbiol; 1996 Nov; 62(11):4186-90. PubMed ID: 16535445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nitrate on the organic Acid and amino Acid composition of legume nodules.
    Streeter JG
    Plant Physiol; 1987 Nov; 85(3):774-9. PubMed ID: 16665775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of C-labeled photosynthate and distribution of enzymes of glucose metabolism in soybean nodules.
    Reibach PH; Streeter JG
    Plant Physiol; 1983 Jul; 72(3):634-40. PubMed ID: 16663058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of active versus passive uptake of metabolites by Rhizobium japonicum bacteroids.
    Reibach PH; Streeter JG
    J Bacteriol; 1984 Jul; 159(1):47-52. PubMed ID: 6203891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Glucose metabolism in isolated bacteroids of lupine nodules].
    Romanov VI; Ivanov BF; Fedulova NG; Raikhinshteĭn MV; Chermenskaia IE
    Biokhimiia; 1980 Dec; 45(12):2139-45. PubMed ID: 7248347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soybean (Glycine max. L.) and bacteroid glyoxylate cycle activities during nodular senescence.
    Fargeix C; Gindro K; Widmer F
    J Plant Physiol; 2004 Feb; 161(2):183-90. PubMed ID: 15022832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton motive force in washed cells of Rhizobium japonicum and bacteroids from Glycine max.
    Bhandari B; Nicholas DJ
    J Bacteriol; 1985 Dec; 164(3):1383-5. PubMed ID: 2999086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochromes of Rhizobium japonicum 61A76 Bacteroids from Soybean Nodules.
    Keister DL; Marsh SS; El Mokadem MT
    Plant Physiol; 1983 Jan; 71(1):194-6. PubMed ID: 16662786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids.
    Emerich DW; Ruiz-Argüeso T; Ching TM; Evans HJ
    J Bacteriol; 1979 Jan; 137(1):153-60. PubMed ID: 762010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gluconate catabolism in Rhizobium japonicum.
    Keele BB; Hamilton PB; Elkan GH
    J Bacteriol; 1970 Mar; 101(3):698-704. PubMed ID: 5438044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study.
    Vauclare P; Bligny R; Gout E; Widmer F
    FEMS Microbiol Lett; 2013 Jun; 343(1):49-56. PubMed ID: 23480054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of Rhizobium japonicum, Rhizobium lupini, Rhizobium trifolii, Rhizobium leguminosarum and of bacteroids by uptake of 2-ketoglutaric acid, glutamic acid and phosphate.
    Werner D; Berghäuser K
    Arch Microbiol; 1976 Apr; 107(3):257-62. PubMed ID: 818969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate and Nitrite Reduction in Relation to Nitrogenase Activity in Soybean Nodules and Rhizobium japonicum Bacteroids.
    Stephens BD; Neyra CA
    Plant Physiol; 1983 Apr; 71(4):731-5. PubMed ID: 16662897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.
    Terpolilli JJ; Masakapalli SK; Karunakaran R; Webb IU; Green R; Watmough NJ; Kruger NJ; Ratcliffe RG; Poole PS
    J Bacteriol; 2016 Oct; 198(20):2864-75. PubMed ID: 27501983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of amino acids from sucrose and Krebs cycle metabolites by Rhizobium lupini bacteroids.
    Kretovich WL; Kariakina TI; Kazakova OV; Sidelnikova LI; Kaloshina GS; Shaposhnikov GL
    Mol Cell Biochem; 1983; 51(1):61-6. PubMed ID: 6855750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Products of Dark CO(2) Fixation in Pea Root Nodules Support Bacteroid Metabolism.
    Rosendahl L; Vance CP; Pedersen WB
    Plant Physiol; 1990 May; 93(1):12-9. PubMed ID: 16667422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose catabolism in Rhizobium japonicum.
    Keele BB; Hamilton PB; Elkan GH
    J Bacteriol; 1969 Mar; 97(3):1184-91. PubMed ID: 5776525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate, organic Acid, and amino Acid composition of bacteroids and cytosol from soybean nodules.
    Streeter JG
    Plant Physiol; 1987 Nov; 85(3):768-73. PubMed ID: 16665774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.