These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16660507)

  • 1. Betaine Accumulation and [C]Formate Metabolism in Water-stressed Barley Leaves.
    Hanson AD; Nelsen CE
    Plant Physiol; 1978 Aug; 62(2):305-12. PubMed ID: 16660507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translocation and metabolism of glycine betaine by barley plants in relation to water stress.
    Ladyman JA; Hitz WD; Hanson AD
    Planta; 1980 Nov; 150(3):191-6. PubMed ID: 24306681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiotracer evidence implicating phosphoryl and phosphatidyl bases as intermediates in betaine synthesis by water-stressed barley leaves.
    Hitz WD; Rhodes D; Hanson AD
    Plant Physiol; 1981 Oct; 68(4):814-22. PubMed ID: 16662004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light stimulation of proline synthesis in water-stressed barley leaves.
    Hanson AD; Tully RE
    Planta; 1979 Jan; 145(1):45-51. PubMed ID: 24317563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Betaine Synthesis from Radioactive Precursors in Attached, Water-stressed Barley Leaves.
    Hanson AD; Scott NA
    Plant Physiol; 1980 Aug; 66(2):342-8. PubMed ID: 16661434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis, translocation, and accumulation of betaine in sugar beet and its progenitors in relation to salinity.
    Hanson AD; Wyse R
    Plant Physiol; 1982 Oct; 70(4):1191-8. PubMed ID: 16662637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proline Accumulation in Water-stressed Barley Leaves in Relation to Translocation and the Nitrogen Budget.
    Tully RE; Hanson AD; Nelsen CE
    Plant Physiol; 1979 Mar; 63(3):518-23. PubMed ID: 16660759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water stress provokes a generalized increase in phosphatidylcholine turnover in barley leaves.
    Giddings TH; Hanson AD
    Planta; 1982 Nov; 155(6):493-501. PubMed ID: 24272115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mechanism of Abscisic Acid-induced Proline Accumulation in Barley Leaves.
    Stewart CR
    Plant Physiol; 1980 Aug; 66(2):230-3. PubMed ID: 16661410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C Tracer Evidence for Synthesis of Choline and Betaine via Phosphoryl Base Intermediates in Salinized Sugarbeet Leaves.
    Hanson AD; Rhodes D
    Plant Physiol; 1983 Mar; 71(3):692-700. PubMed ID: 16662890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-induced osmotic adjustment in growing regions of barley leaves.
    Matsuda K; Riazi A
    Plant Physiol; 1981 Sep; 68(3):571-6. PubMed ID: 16661959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Betaine accumulation and betaine-aldehyde dehydrogenase in spinach leaves.
    Pan SM; Moreau RA; Yu C; Huang AH
    Plant Physiol; 1981 Jun; 67(6):1105-8. PubMed ID: 16661818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in foliar proline concentration of osmotically stressed barley.
    Kocheva KV; Georgiev GI
    Z Naturforsch C J Biosci; 2008; 63(1-2):101-4. PubMed ID: 18386497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino Acids Translocated from Turgid and Water-stressed Barley Leaves : II. Studies with N and C.
    Hanson AD; Tully RE
    Plant Physiol; 1979 Sep; 64(3):467-71. PubMed ID: 16660989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Betaine aldehyde dehydrogenase in sorghum.
    Wood AJ; Saneoka H; Rhodes D; Joly RJ; Goldsbrough PB
    Plant Physiol; 1996 Apr; 110(4):1301-8. PubMed ID: 8934627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choline Synthesis in Spinach in Relation to Salt Stress.
    Summers PS; Weretilnyk EA
    Plant Physiol; 1993 Dec; 103(4):1269-1276. PubMed ID: 12232019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repression of formate dehydrogenase in Solanum tuberosum increases steady-state levels of formate and accelerates the accumulation of proline in response to osmotic stress.
    Ambard-Bretteville F; Sorin C; Rébeillé F; Hourton-Cabassa C; Colas des Francs-Small C
    Plant Mol Biol; 2003 Aug; 52(6):1153-68. PubMed ID: 14682615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.
    Ishitani M; Nakamura T; Han SY; Takabe T
    Plant Mol Biol; 1995 Jan; 27(2):307-15. PubMed ID: 7888620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gramine Accumulation in Leaves of Barley Grown under High-Temperature Stress.
    Hanson AD; Ditz KM; Singletary GW; Leland TJ
    Plant Physiol; 1983 Apr; 71(4):896-904. PubMed ID: 16662926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foliar application of glycinebetaine regulates soluble sugars and modulates physiological adaptations in sweet potato (Ipomoea batatas) under water deficit.
    Tisarum R; Theerawitaya C; Samphumphuang T; Singh HP; Cha-Um S
    Protoplasma; 2020 Jan; 257(1):197-211. PubMed ID: 31407117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.