These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16660695)

  • 1. Environmental Influences on Open Stomates of a Crassulacean Acid Metabolism Plant, Agave deserti.
    Nobel PS; Hartsock TL
    Plant Physiol; 1979 Jan; 63(1):63-6. PubMed ID: 16660695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-Term and Long-Term Responses of Crassulacean Acid Metabolism Plants to Elevated CO(2).
    Nobel PS; Hartsock TL
    Plant Physiol; 1986 Oct; 82(2):604-6. PubMed ID: 16665077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water Relations and Photosynthesis of a Desert CAM Plant, Agave deserti.
    Nobel PS
    Plant Physiol; 1976 Oct; 58(4):576-82. PubMed ID: 16659721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance Analysis of Nocturnal Carbon Dioxide Uptake by a Crassulacean Acid Metabolism Succulent, Agave deserti.
    Nobel PS; Hartsock TL
    Plant Physiol; 1978 Apr; 61(4):510-4. PubMed ID: 16660326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Day-Night Variations in Malate Concentration, Osmotic Pressure, and Hydrostatic Pressure in Cereus validus.
    Lüttge U; Nobel PS
    Plant Physiol; 1984 Jul; 75(3):804-7. PubMed ID: 16663708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of plant temperature and water loss by the desert succulent, Agave deserti.
    Woodhouse RM; Williams JG; Nobel PS
    Oecologia; 1983 Mar; 57(3):291-297. PubMed ID: 28309353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limited photosynthetic plasticity in the leaf-succulent CAM plant Agave angustifolia grown at different temperatures.
    Holtum JAM; Winter K
    Funct Plant Biol; 2014 Aug; 41(8):843-849. PubMed ID: 32481038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions.
    Hartzell S; Bartlett MS; Inglese P; Consoli S; Yin J; Porporato A
    Plant Cell Environ; 2021 Jan; 44(1):34-48. PubMed ID: 33073369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minor Physiological Response to Elevated CO(2) by the CAM Plant Agave vilmoriniana.
    Szarek SR; Holthe PA; Ting IP
    Plant Physiol; 1987 Apr; 83(4):938-40. PubMed ID: 16665367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases.
    Owen NA; Griffiths H
    New Phytol; 2013 Dec; 200(4):1116-31. PubMed ID: 23992169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of Crassulacean Acid Metabolism in the Succulent C(4) Dicot, Portulaca oleracea L.
    Koch K; Kennedy RA
    Plant Physiol; 1980 Feb; 65(2):193-7. PubMed ID: 16661159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of Acid Metabolism in Portulacaria afra.
    Ting IP; Hanscom Z
    Plant Physiol; 1977 Mar; 59(3):511-4. PubMed ID: 16659882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur dioxide effects on plants exhibiting Crassulacean Acid Metabolism.
    Olszyk DM; Bytnerowicz A; Fox CA
    Environ Pollut; 1987; 43(1):47-62. PubMed ID: 15092814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave.
    Yin H; Guo HB; Weston DJ; Borland AM; Ranjan P; Abraham PE; Jawdy SS; Wachira J; Tuskan GA; Tschaplinski TJ; Wullschleger SD; Guo H; Hettich RL; Gross SM; Wang Z; Visel A; Yang X
    BMC Genomics; 2018 Aug; 19(1):588. PubMed ID: 30081833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Photoperiod and Leaf Age on Crassulacean Acid Metabolism in Portulacaria afra (L.) Jacq.
    Guralnick LJ; Rorabaugh PA; Hanscom Z
    Plant Physiol; 1984 Jun; 75(2):454-7. PubMed ID: 16663642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single leaf of Camellia oleifera has two types of carbon assimilation pathway, C(3) and crassulacean acid metabolism.
    Yuan M; Xu F; Wang SD; Zhang DW; Zhang ZW; Cao Y; Xu XC; Luo MH; Yuan S
    Tree Physiol; 2012 Feb; 32(2):188-99. PubMed ID: 22337600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between Stomatal Behavior and Internal Carbon Dioxide Concentration in Crassulacean Acid Metabolism Plants.
    Cockburn W
    Plant Physiol; 1979 Jun; 63(6):1029-32. PubMed ID: 16660851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible roles for phytohormones in controlling the stomatal behavior of Mesembryanthemum crystallinum during the salt-induced transition from C
    Wakamatsu A; Mori IC; Matsuura T; Taniwaki Y; Ishii R; Yoshida R
    J Plant Physiol; 2021 Jul; 262():153448. PubMed ID: 34058643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root distribution and seasonal production in the northwestern Sonoran Desert for a C3 subshrub, a C4 bunchgrass, and a CAM leaf succulent.
    Nobel P
    Am J Bot; 1997 Jul; 84(7):949. PubMed ID: 21708649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of foliar gas exchange to exogenously applied ethylene.
    Taylor GE; Gunderson CA
    Plant Physiol; 1986 Nov; 82(3):653-7. PubMed ID: 16665086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.