These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16660695)

  • 21. Productivity of Agave deserti: measurement by dry weight and monthly prediction using physiological responses to environmental parameters.
    Nobel PS
    Oecologia; 1984 Sep; 64(1):1-7. PubMed ID: 28311630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon Dioxide and Water Vapor Exchange in the Crassulacean Acid Metabolism Plant Kalanchoë pinnáta during a Prolonged Light Period: METABOLIC AND STOMATAL CONTROL OF CARBON METABOLISM.
    Winter K
    Plant Physiol; 1980 Nov; 66(5):917-21. PubMed ID: 16661552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crassulacean acid metabolism photosynthesis: ;working the night shift'.
    Black CC; Osmond CB
    Photosynth Res; 2003; 76(1-3):329-41. PubMed ID: 16228591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of water transport capacity due to xylem cavitation in roots of two CAM succulents.
    Linton MJ; Nobel PS
    Am J Bot; 1999 Nov; 86(11):1538-43. PubMed ID: 10562245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The "Kluge-Lüttge Kammer": a preliminary evaluation of an enclosed, Crassulacean acid metabolism (CAM) Mesocosm that allows separation of synchronized and desynchronized contributions of plants to whole system gas exchange.
    Rascher U; Bobich EG; Osmond CB
    Plant Biol (Stuttg); 2006 Jan; 8(1):167-74. PubMed ID: 16435279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Daily Changes in CO(2) and Water Vapor Exchange, Chlorophyll Fluorescence, and Leaf Water Relations in the Halophyte Mesembryanthemum crystallinum during the Induction of Crassulacean Acid Metabolism in Response to High NaCl Salinity.
    Winter K; Gademann R
    Plant Physiol; 1991 Mar; 95(3):768-76. PubMed ID: 16668052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave.
    Abraham PE; Yin H; Borland AM; Weighill D; Lim SD; De Paoli HC; Engle N; Jones PC; Agh R; Weston DJ; Wullschleger SD; Tschaplinski T; Jacobson D; Cushman JC; Hettich RL; Tuskan GA; Yang X
    Nat Plants; 2016 Nov; 2():16178. PubMed ID: 27869799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shifts in the Carbon Metabolism of Xerosicyos danguyi H. Humb. (Cucurbitaceae) Brought About by Water Stress : I. General Characteristics.
    Rayder L; Ting IP
    Plant Physiol; 1983 Jul; 72(3):606-10. PubMed ID: 16663053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosynthesis affects following night leaf conductance in Vicia faba.
    Easlon HM; Richards JH
    Plant Cell Environ; 2009 Jan; 32(1):58-63. PubMed ID: 19076531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of infrared thermography for monitoring crassulacean acid metabolism.
    Barkla BJ; Rhodes T
    Funct Plant Biol; 2016 Feb; 44(1):46-51. PubMed ID: 32480545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Various Levels of CO(2) on the Induction of Crassulacean Acid Metabolism in Portulacaria afra (L.) Jacq.
    Huerta AJ; Ting IP
    Plant Physiol; 1988 Sep; 88(1):183-8. PubMed ID: 16666263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Stomatal and Nonstomatal Components in the Environmental Control of CO(2) Exchange in Leaves of Welwitschia mirabilis.
    Winter K; Schramm MJ
    Plant Physiol; 1986 Sep; 82(1):173-8. PubMed ID: 16664987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and Expression of
    Deng G; Huang X; Xie L; Tan S; Gbokie T; Bao Y; Xie Z; Yi K
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31340544
    [No Abstract]   [Full Text] [Related]  

  • 34. Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave.
    Owen NA; Choncubhair ÓN; Males J; Del Real Laborde JI; Rubio-Cortés R; Griffiths H; Lanigan G
    Plant Cell Environ; 2016 Feb; 39(2):295-309. PubMed ID: 26177873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CO(2)-concentrating: consequences in crassulacean acid metabolism.
    Lüttge U
    J Exp Bot; 2002 Nov; 53(378):2131-42. PubMed ID: 12379779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peeling back the layers of crassulacean acid metabolism: functional differentiation between Kalanchoë fedtschenkoi epidermis and mesophyll proteomes.
    Abraham PE; Hurtado Castano N; Cowan-Turner D; Barnes J; Poudel S; Hettich R; Flütsch S; Santelia D; Borland AM
    Plant J; 2020 Jul; 103(2):869-888. PubMed ID: 32314451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influences of root distribution and growth on predicted water uptake and interspecific competition.
    Franco AC; Nobel PS
    Oecologia; 1990 Feb; 82(2):151-157. PubMed ID: 28312658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water Relations, Diurnal Acidity Changes, and Productivity of a Cultivated Cactus, Opuntia ficus-indica.
    Acevedo E; Badilla I; Nobel PS
    Plant Physiol; 1983 Jul; 72(3):775-80. PubMed ID: 16663084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stomatal response to blue light in crassulacean acid metabolism plants Kalanchoe pinnata and Kalanchoe daigremontiana.
    Gotoh E; Oiwamoto K; Inoue SI; Shimazaki KI; Doi M
    J Exp Bot; 2019 Feb; 70(4):1367-1374. PubMed ID: 30576518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecophysiological Significance of CO(2)-Recycling via Crassulacean Acid Metabolism in Talinum calycinum Engelm. (Portulacaceae).
    Martin CE; Higley M; Wang WZ
    Plant Physiol; 1988 Feb; 86(2):562-8. PubMed ID: 16665946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.