These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 16660805)
41. Leaf carbohydrates influence transcriptional and post-transcriptional regulation of nocturnal carboxylation and starch degradation in the facultative CAM plant, Mesembryanthemum crystallinum. Taybi T; Cushman JC; Borland AM J Plant Physiol; 2017 Nov; 218():144-154. PubMed ID: 28822907 [TBL] [Abstract][Full Text] [Related]
42. Salt regulation of transcript levels for the c subunit of a leaf vacuolar H(+)-ATPase in the halophyte Mesembryanthemum crystallinum. Tsiantis MS; Bartholomew DM; Smith JA Plant J; 1996 May; 9(5):729-36. PubMed ID: 8653119 [TBL] [Abstract][Full Text] [Related]
44. Proteomic analysis of Mesembryanthemum crystallinum leaf microsomal fractions finds an imbalance in V-ATPase stoichiometry during the salt-induced transition from C3 to CAM. Cosentino C; Di Silvestre D; Fischer-Schliebs E; Homann U; De Palma A; Comunian C; Mauri PL; Thiel G Biochem J; 2013 Mar; 450(2):407-15. PubMed ID: 23252380 [TBL] [Abstract][Full Text] [Related]
45. Characterization of the plastidic phosphate translocators in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum. Kore-eda S; Nozawa A; Okada Y; Takashi K; Azad MA; Ohnishi J; Nishiyama Y; Tozawa Y Biosci Biotechnol Biochem; 2013; 77(7):1511-6. PubMed ID: 23832369 [TBL] [Abstract][Full Text] [Related]
46. Intracellular Localization of Enzymes of Carbon Metabolism in Mesembryanthemum crystallinum Exhibiting C(3) Photosynthetic Characteristics or Performing Crassulacean Acid Metabolism. Winter K; Foster JG; Edwards GE; Holtum JA Plant Physiol; 1982 Feb; 69(2):300-7. PubMed ID: 16662197 [TBL] [Abstract][Full Text] [Related]
47. Salinity and Salt-Priming Impact on Growth, Photosynthetic Performance, and Nutritional Quality of Edible He J; Ng OWJ; Qin L Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161313 [No Abstract] [Full Text] [Related]
48. Malate accumulation in different organs of Mesembryanthemum crystallinum L. following age-dependent or salinity-triggered CAM metabolism. Libik M; Pater B; Elliot S; Slesak I; Miszalskia Z Z Naturforsch C J Biosci; 2004; 59(3-4):223-8. PubMed ID: 15241931 [TBL] [Abstract][Full Text] [Related]
49. Plastidic metabolite transporters and their physiological functions in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum. Häusler RE; Baur B; Scharte J; Teichmann T; Eicks M; Fischer KL; Flügge UI; Schubert S; Weber A; Fischer K Plant J; 2000 Nov; 24(3):285-96. PubMed ID: 11069702 [TBL] [Abstract][Full Text] [Related]
50. Effects of exogenously applied hydrogen peroxide on antioxidant and osmoprotectant profiles and the C3-CAM shift in the halophyte Mesembryanthemum crystallinum L. Surówka E; Dziurka M; Kocurek M; Goraj S; Rapacz M; Miszalski Z J Plant Physiol; 2016 Aug; 200():102-10. PubMed ID: 27368070 [TBL] [Abstract][Full Text] [Related]
51. Multiomics unravels potential molecular switches in the C Guan Q; Kong W; Tan B; Zhu W; Akter T; Li J; Tian J; Chen S J Proteomics; 2024 May; 299():105145. PubMed ID: 38431086 [TBL] [Abstract][Full Text] [Related]
52. Diurnal expression of five protein phosphatase type 2C genes in the common ice plant, Mesembryanthemum crystallinum. Sato K; Ohsato H; Izumi S; Miyazaki S; Bohnert HJ; Moriyama H; Fukuhara T Funct Plant Biol; 2007 Aug; 34(7):581-588. PubMed ID: 32689386 [TBL] [Abstract][Full Text] [Related]
53. Metabolic control of photosynthetic electron transport in crassulacean acid metabolism-induced Mesembryanthemum crystallinum. Schöttler MA; Kirchhoff H; Weis E; Siebke K Funct Plant Biol; 2002 Jun; 29(6):697-705. PubMed ID: 32689516 [TBL] [Abstract][Full Text] [Related]
54. A salinity-induced gene from the halophyte M. crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase. Forsthoefel NR; Vernon DM; Cushman JC Plant Mol Biol; 1995 Oct; 29(2):213-26. PubMed ID: 7579174 [TBL] [Abstract][Full Text] [Related]
55. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. Borland AM; Griffiths H; Hartwell J; Smith JA J Exp Bot; 2009; 60(10):2879-96. PubMed ID: 19395392 [TBL] [Abstract][Full Text] [Related]
56. [Ultrastructure and crassulacean acid metabolism in Mesembryanthemum crystallinum leaves during normal and NaCl-induced ageing]. von Willert DJ; Kramer D Planta; 1972 Sep; 107(3):227-37. PubMed ID: 24477441 [TBL] [Abstract][Full Text] [Related]
57. [The role of inorganic phosphate in the regulation of the phosphoenolpyruvate carboxylase of Mesembryanthemum crystallinum L]. von Willert DJ Planta; 1975 Jan; 122(3):273-80. PubMed ID: 24435995 [TBL] [Abstract][Full Text] [Related]
58. Origin and mechanism of crassulacean acid metabolism in orchids as implied by comparative transcriptomics and genomics of the carbon fixation pathway. Zhang L; Chen F; Zhang GQ; Zhang YQ; Niu S; Xiong JS; Lin Z; Cheng ZM; Liu ZJ Plant J; 2016 Apr; 86(2):175-85. PubMed ID: 26959080 [TBL] [Abstract][Full Text] [Related]
59. Molecular cloning and expression of chloroplast NADP-malate dehydrogenase during Crassulacean acid metabolism induction by salt stress. Cushman JC Photosynth Res; 1993 Jan; 35(1):15-27. PubMed ID: 24318617 [TBL] [Abstract][Full Text] [Related]
60. Nocturnal Accumulation of Malic Acid Occurs in Mesophyll Tissue without Proton Transport to Epidermal Tissue in the Inducible Crassulacean Acid Metabolism Plant Mesembryanthemum crystallinum: EVIDENCE AGAINST A PREVIOUS HYPOTHESIS. Winter K; Edwards GE; Holtum JA Plant Physiol; 1981 Aug; 68(2):355-7. PubMed ID: 16661916 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]