These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16660928)

  • 1. Isolation and Oxidative Properties of Intact Mitochondria from the Leaves of Sedum praealtum: A Crassulacean Acid Metabolism Plant.
    Arron GP; Spalding MH; Edwards GE
    Plant Physiol; 1979 Aug; 64(2):182-6. PubMed ID: 16660928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and oxidative properties of intact mitochondria isolated from spinach leaves.
    Douce R; Moore AL; Neuburger M
    Plant Physiol; 1977 Oct; 60(4):625-8. PubMed ID: 16660151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of substantially chlorophyll-free pea leaf mitochondria prepared by sucrose density gradient separation.
    Nash D; Wiskich JT
    Plant Physiol; 1983 Mar; 71(3):627-34. PubMed ID: 16662878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of respiratory inhibitors on NADH, succinate and malate oxidation in corn mitochondria.
    Wilson RH; Hanson JB
    Plant Physiol; 1969 Sep; 44(9):1335-41. PubMed ID: 5379109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of Higher Plant Mitochondria. III. Effects of Respiratory Inhibitors.
    Ikuma H; Bonner WD
    Plant Physiol; 1967 Nov; 42(11):1535-44. PubMed ID: 16656690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants.
    Igamberdiev AU; Bykova NV; Gardeström P
    FEBS Lett; 1997 Jul; 412(2):265-9. PubMed ID: 9256232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malate oxidation, rotenone-resistance, and alternative path activity in plant mitochondria.
    Wiskich JT; Day DA
    Plant Physiol; 1982 Oct; 70(4):959-64. PubMed ID: 16662651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malate Metabolism in Leaf Mitochondria from the Crassulacean Acid Metabolism Plant Kalanchoë blossfeldiana Poelln.
    Rustin P; Lance C
    Plant Physiol; 1986 Aug; 81(4):1039-43. PubMed ID: 16664940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in oxidative properties of Kalanchoe blossfeldiana leaf mitochondria during development of Crassulacean acid metabolism.
    Rustin P; Queiroz-Claret C
    Planta; 1985 Jun; 164(3):415-22. PubMed ID: 24249613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyruvate metabolism in castor-bean mitochondria.
    Brailsford MA; Thompson AG; Kaderbhai N; Beechey RB
    Biochem J; 1986 Oct; 239(2):355-61. PubMed ID: 3814077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Requirement for Photosynthesis in Sedum praealtum during Two Phases of Crassulacean Acid Metabolism.
    Spalding MH; Edwards GE
    Plant Physiol; 1980 Sep; 66(3):463-5. PubMed ID: 16661456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of rotenone on respiration in pea cotyledon mitochondria.
    Johnson-Flanagan AM; Spencer MS
    Plant Physiol; 1981 Dec; 68(6):1211-7. PubMed ID: 16662080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular Localization of Some Key Enzymes of Crassulacean Acid Metabolism in Sedum praealtum.
    Spalding MH; Schmitt MR; Ku SB; Edwards GE
    Plant Physiol; 1979 Apr; 63(4):738-43. PubMed ID: 16660803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malate Decarboxylation by Kalanchoë daigremontiana Mitochondria and Its Role in Crassulacean Acid Metabolism.
    Day DA
    Plant Physiol; 1980 Apr; 65(4):675-9. PubMed ID: 16661260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The oxidation of malate and exogenous reduced nicotinamide adenine dinucleotide by isolated plant mitochondria.
    Day DA; Wiskich JT
    Plant Physiol; 1974 Jan; 53(1):104-9. PubMed ID: 16658636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malate decarboxylation in isolated mitochondria from the Crassulacean acid metabolism plant Sedum praealtum.
    Spalding MH; Arron GP; Edwards GE
    Arch Biochem Biophys; 1980 Feb; 199(2):448-56. PubMed ID: 7189104
    [No Abstract]   [Full Text] [Related]  

  • 18. Reduction of Nitrate via a Dicarboxylate Shuttle in a Reconstituted System of Supernatant and Mitochondria from Spinach Leaves.
    Woo KC; Jokinen M; Canvin DT
    Plant Physiol; 1980 Mar; 65(3):433-6. PubMed ID: 16661207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NADH oxidase system (external) of muscle mitochondria and its role in the oxidation of cytoplasmic NADH.
    Rasmussen UF; Rasmussen HN
    Biochem J; 1985 Aug; 229(3):631-41. PubMed ID: 4052015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway.
    Rustin P; Moreau F; Lance C
    Plant Physiol; 1980 Sep; 66(3):457-62. PubMed ID: 16661455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.