These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16661)

  • 1. Effect of hydrophobic probes on the higher structure of D-amino acid oxidase.
    Yagi K; Tanaka F; Ohishi N; Morita M
    Biochim Biophys Acta; 1977 May; 492(1):112-25. PubMed ID: 16661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of hydrophobic probes with the apoenzyme of pig heart lipoamide dehydrogenase.
    Ogasahara K; Koike K; Hamada M; Hiraoka T
    J Biochem; 1976 May; 79(5):967-75. PubMed ID: 956145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond fluorescence lifetime of the coenzyme of D-amino acid oxidase.
    Nakashima N; Yoshihara K; Tanaka F; Yagi K
    J Biol Chem; 1980 Jun; 255(11):5261-3. PubMed ID: 6102996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of D-amino acid oxidase. IX. Changes in the fluorescence polarization of FAD upon complex formation.
    Yagi K; Tanaka F; Oishi N
    J Biochem; 1975 Feb; 77(2):463-8. PubMed ID: 236295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exchange of free and bound coenzyme of flavin enzymes studied with [14C]FAD.
    Okuda J; Nagamine J; Yagi K
    Biochim Biophys Acta; 1979 Feb; 566(2):245-52. PubMed ID: 33712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of D-amino acid oxidase. VII. Interaction of hydrophobic probes with D-amino acid oxidase.
    Naoi M; Kotaki A; Yagi K
    J Biochem; 1973 Dec; 74(6):1097-105. PubMed ID: 4149984
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of halide anions on the binding of FAD to D-amino acid oxidase and the tryptophanyl fluorescence of the apoenzyme.
    Nishina Y; Horiike K; Shiga K; Miyake Y; Yamano T
    J Biochem; 1977 May; 81(5):1455-63. PubMed ID: 19435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picosecond laser fluorometry of FAD of D-amino acid oxidase-benzoate complex.
    Yagi K; Tanaka F; Nakashima N; Yoshihara K
    J Biol Chem; 1983 Mar; 258(6):3799-802. PubMed ID: 6131888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction.
    Risse B; Stempfer G; Rudolph R; Möllering H; Jaenicke R
    Protein Sci; 1992 Dec; 1(12):1699-709. PubMed ID: 1304899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-induced changes in the coenzyme environment of D-amino acid oxidase revealed by the multiple decays of FAD fluorescence.
    Tanaka F; Tamai N; Yamazaki I; Nakashima N; Yoshihara K
    Biophys J; 1989 Nov; 56(5):901-9. PubMed ID: 2574999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and preliminary crystallographic data of N6-(6-carbamoylhexyl)-FAD-D-amino-acid oxidase from pig kidney, a semi-synthetic oxidase.
    Stocker A; Hecht HJ; Bückmann AF
    Eur J Biochem; 1996 Jun; 238(2):519-28. PubMed ID: 8681967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of steroids with D-amino acid oxidase.
    Tanaka F; Bamji MS; Yagi K
    Biochim Biophys Acta; 1978 Jan; 522(1):43-8. PubMed ID: 23164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of guanidine hydrochloride on the holo- and apo-enzymes of pig heart lipoamide dehydrogenase.
    Ogasahara K; Koike K; Hamada M; Hiraoka T
    J Biochem; 1976 Apr; 79(4):819-28. PubMed ID: 931980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton release from flavoprotein D-amino acid oxidase on complexation with the zwitterionic ligand, trigonelline.
    Nishina Y; Sato K; Shiga K
    J Biochem; 1990 May; 107(5):726-31. PubMed ID: 1975807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the active centre of Rhodotorula gracilis D-amino acid oxidase and comparison with pig kidney enzyme.
    Pollegioni L; Ghisla S; Pilone MS
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):389-94. PubMed ID: 1356333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic control of D-amino acid oxidase by benzoate binding.
    Van den Berghe-Snorek S; Stankovich MT
    J Biol Chem; 1985 Mar; 260(6):3373-9. PubMed ID: 2857720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-association mode of a flavoenzyme D-amino acid oxidase from hog kidney. II. Stoichiometry of holoenzyme association and energetics of subunit association.
    Tojo H; Horiike K; Shiga K; Nishina Y; Watari H; Yamano T
    J Biol Chem; 1985 Oct; 260(23):12615-21. PubMed ID: 2864343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 13C-NMR studies on the reaction intermediates of porcine kidney D-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide.
    Miura R; Miyake Y
    J Biochem; 1987 Dec; 102(6):1345-54. PubMed ID: 2896189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale preparation and reconstitution of apo-flavoproteins with special reference to butyryl-CoA dehydrogenase from Megasphaera elsdenii. Hydrophobic-interaction chromatography.
    Van Berkel WJ; Van den Berg WA; Müller F
    Eur J Biochem; 1988 Dec; 178(1):197-207. PubMed ID: 3203689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.