BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16661093)

  • 1. Polarographic Study of Dicarboxylic-Acid-dependent Export of Reducing Equivalents from Illuminated Chloroplasts.
    Anderson JW; House CM
    Plant Physiol; 1979 Dec; 64(6):1064-9. PubMed ID: 16661093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarographic study of oxaloacetate reduction by isolated pea chloroplasts.
    Anderson JW; House CM
    Plant Physiol; 1979 Dec; 64(6):1058-63. PubMed ID: 16661092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of ammonia and 2-oxoglutarate-dependent o(2) evolution in isolated chloroplasts by dicarboxylates and the role of the chloroplast in photorespiratory nitrogen recycling.
    Woo KC; Osmond CB
    Plant Physiol; 1982 Mar; 69(3):591-6. PubMed ID: 16662255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Photosynthetic Electron Transport in Intact Spinach Chloroplasts: II. MECHANISM OF SALT-INDUCED INCREASE IN OXALOACETATE PHOTOREDUCTION.
    Mackay AB; Marsho TV
    Plant Physiol; 1980 Oct; 66(4):754-7. PubMed ID: 16661516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of chloroplast photosynthetic activity by exogenous magnesium.
    Huber SC
    Plant Physiol; 1978 Sep; 62(3):321-5. PubMed ID: 16660509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C4-Dicarboxylic acid metabolism in bundle-sheath chloroplasts, mitochondria and strands of Eriochloa borumensis Hack., a phosphoenolpyruvate-carboxykinase type C4 species.
    Rathnam CK; Edwards GE
    Planta; 1977 Jan; 133(2):135-44. PubMed ID: 24425216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-dependent reduction of hydrogen peroxide by ruptured pea chloroplasts.
    Jablonski PP; Anderson JW
    Plant Physiol; 1982 Jun; 69(6):1407-13. PubMed ID: 16662413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of dicarboxylate stimulation of ammonia, glutamine, and 2-oxoglutarate-dependent o(2) evolution in isolated pea chloroplasts.
    Dry IB; Wiskich JT
    Plant Physiol; 1983 Jun; 72(2):291-6. PubMed ID: 16662995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism.
    Kinoshita H; Nagasaki J; Yoshikawa N; Yamamoto A; Takito S; Kawasaki M; Sugiyama T; Miyake H; Weber APM; Taniguchi M
    Plant J; 2011 Jan; 65(1):15-26. PubMed ID: 21175886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polarographic study of glutamate synthase activity in isolated chloroplasts.
    Anderson JW; Done J
    Plant Physiol; 1977 Sep; 60(3):354-9. PubMed ID: 16660092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of NAD Malic Enzyme in Leaves of C(4) Plants : EFFECTS OF MALATE DEHYDROGENASE AND OTHER FACTORS.
    Hatch MD; Tsuzuki M; Edwards GE
    Plant Physiol; 1982 Feb; 69(2):483-91. PubMed ID: 16662234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts.
    Heber U; Kirk MR
    Biochim Biophys Acta; 1975 Jan; 376(1):136-50. PubMed ID: 164902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel, non-redox-regulated NAD-dependent malate dehydrogenase from chloroplasts of Arabidopsis thaliana L.
    Berkemeyer M; Scheibe R; Ocheretina O
    J Biol Chem; 1998 Oct; 273(43):27927-33. PubMed ID: 9774405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria.
    Neuburger M; Douce R
    Biochim Biophys Acta; 1980 Feb; 589(2):176-89. PubMed ID: 7356982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malate dehydrogenase isoenzymes in division synchronized cultures of euglena.
    Davis B; Merrett MJ
    Plant Physiol; 1973 Jun; 51(6):1127-32. PubMed ID: 16658478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disequilibrium in the malate dehydrogenase reaction in rat liver mitochondria in vivo.
    Heath DF; Phillips JC
    Biochem J; 1972 Apr; 127(3):453-70. PubMed ID: 4342489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of NADP-malate dehydrogenase in C4 plants: relationship among enzyme activity, NADPH to NADP ratios, and thioredoxin redox states in intact maize mesophyll chloroplasts.
    Rebeille F; Hatch MD
    Arch Biochem Biophys; 1986 Aug; 249(1):171-9. PubMed ID: 3740850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inhibitors on ammonia-, 2-oxoglutarate-, and oxaloacetate-dependent o(2) evolution in illuminated chloroplasts.
    Woo KC
    Plant Physiol; 1983 Jan; 71(1):112-7. PubMed ID: 16662767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flux control of the malate valve in leaf cells.
    Fridlyand LE; Backhausen JE; Scheibe R
    Arch Biochem Biophys; 1998 Jan; 349(2):290-8. PubMed ID: 9448717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.