BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16661093)

  • 21. CO(2) Assimilation and Malate Decarboxylation by Isolated Bundle Sheath Chloroplasts from Zea mays.
    Boag S; Jenkins CL
    Plant Physiol; 1985 Sep; 79(1):165-70. PubMed ID: 16664363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The permeability of mitochondria to oxaloacetate and malate.
    Haslam JM; Krebs HA
    Biochem J; 1968 May; 107(5):659-67. PubMed ID: 16742587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox Transfer across the Inner Chloroplast Envelope Membrane.
    Heineke D; Riens B; Grosse H; Hoferichter P; Peter U; Flügge UI; Heldt HW
    Plant Physiol; 1991 Apr; 95(4):1131-7. PubMed ID: 16668101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NADP regulates the light activation of NADP-dependent malate dehydrogenase.
    Scheibe R; Jacquot JP
    Planta; 1983 May; 157(6):548-53. PubMed ID: 24264421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of reversible intracellular transfer of reducing potential.
    Kunz WS; Davis EJ
    Arch Biochem Biophys; 1991 Jan; 284(1):40-6. PubMed ID: 1824912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of NADP-Malate Dehydrogenase Activity in Maize Mesophyll Chloroplasts.
    Leegood RC; Walker DA
    Plant Physiol; 1983 Mar; 71(3):513-8. PubMed ID: 16662858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Capacity of the malate/oxaloacetate shuttle for transfer of reducing equivalents across the envelope of leaf chloroplasts.
    Giersch C
    Arch Biochem Biophys; 1982 Dec; 219(2):379-87. PubMed ID: 7165309
    [No Abstract]   [Full Text] [Related]  

  • 28. Orthophosphate control of glucose-6-phosphate dehydrogenase light modulation in relation to the induction phase of chloroplast photosynthesis.
    Huber SC
    Plant Physiol; 1979 Nov; 64(5):846-51. PubMed ID: 16661067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transfer of reducing equivalents across the mitochondrial membrane. I. Hydrogen transfer mechanisms involved in the reduction of pyruvate to lactate in isolated liver cells.
    Meijer AJ; Williamson JR
    Biochim Biophys Acta; 1974 Jan; 333(1):1-11. PubMed ID: 19396987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Malate dehydrogenase of the cytosol. A kinetic investigation of the reaction mechanism and a comparison with lactate dehydrogenase.
    Lodola A; Shore JD; Parker DM; Holbrook J
    Biochem J; 1978 Dec; 175(3):987-98. PubMed ID: 217361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light-dependent reduction of dehydroascorbate by ruptured pea chloroplasts.
    Jablonski PP; Anderson JW
    Plant Physiol; 1981 Jun; 67(6):1239-44. PubMed ID: 16661843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Competition between electron acceptors in photosynthesis: Regulation of the malate valve during CO2 fixation and nitrite reduction.
    Backhausen JE; Kitzmann C; Scheibe R
    Photosynth Res; 1994 Oct; 42(1):75-86. PubMed ID: 24307470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the Mechanism of Activation by Light of the NADP-dependent Malate Dehydrogenase in Spinach Chloroplasts.
    Scheibe R; Beck E
    Plant Physiol; 1979 Nov; 64(5):744-8. PubMed ID: 16661046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion.
    MacDonald MJ
    J Biol Chem; 1995 Aug; 270(34):20051-8. PubMed ID: 7650022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxalacetate decarboxylase and pyruvate carboxylase activities, and effect of sulfhydryl reagents in malic enzyme from Sulfolobus solfataricus.
    Guagliardi A; Moracci M; Manco G; Rossi M; Bartolucci S
    Biochim Biophys Acta; 1988 Nov; 957(2):301-11. PubMed ID: 3142524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue.
    Patel MS; Jomain-Baum M; Ballard FJ; Hanson RW
    J Lipid Res; 1971 Mar; 12(2):179-91. PubMed ID: 4396562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NAD-linked L(+)-lactate dehydrogenase from the strict aerobe alcaligenes eutrophus. 2. Kinetic properties and inhibition by oxaloacetate.
    Steinbüchel A; Schlegel HG
    Eur J Biochem; 1983 Feb; 130(2):329-34. PubMed ID: 6825698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photosynthesis in phosphoenolpyruvate carboxykinase-type C4 plants: photosynthetic activities of isolated bundle sheath cells from Urochloa panicoides.
    Burnell JN; Hatch MD
    Arch Biochem Biophys; 1988 Jan; 260(1):177-86. PubMed ID: 3124745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of malate oxidation in isolated mung bean mitochondria: I. Effects of oxaloacetate, pyruvate, and thiamine pyrophosphate.
    Bowman EJ; Ikuma H
    Plant Physiol; 1976 Sep; 58(3):433-7. PubMed ID: 16659693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immobilized respiratory chain activities from Escherichia coli utilized to measure D- and L-lactate, succinate, L-malate, 3-glycerophosphate, pyruvate, or NAD(P)H.
    Burstein C; Adamowicz E; Boucherit K; Rabouille C; Romette JL
    Appl Biochem Biotechnol; 1986 Feb; 12(1):1-15. PubMed ID: 3518628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.