These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16661195)

  • 1. Nutritional Regulation of Organelle Biogenesis in Euglena: REPRESSION OF CHLOROPHYLL AND NADP-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE SYNTHESIS.
    Horrum MA; Schwartzbach SD
    Plant Physiol; 1980 Feb; 65(2):382-6. PubMed ID: 16661195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutritional Regulation of Organelle Biogenesis in Euglena: INDUCTION OF MICROBODIES.
    Horrum MA; Schwartzbach SD
    Plant Physiol; 1981 Aug; 68(2):430-4. PubMed ID: 16661930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of chloroplast formation in Euglena gracilis. Antagonism between carbon and nitrogen sources.
    Harris RC; Kirk JT
    Biochem J; 1969 Jun; 113(1):195-205. PubMed ID: 5806391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo and Nutritional Regulation of Euglena Organelle Development.
    Schwartzbach SD
    Adv Exp Med Biol; 2017; 979():159-182. PubMed ID: 28429322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Diurnal progress of NADP-linked glyceraldehyde-3-phosphate-dehydrogenase in synchronous culture of unicellular green alga Ankistrodesmus braunii and its susceptibility to X-irradiation and inhibitiors of protein synthesis].
    Theiss-Seuberling HB
    Arch Microbiol; 1975 Jun; 104(2):136-46. PubMed ID: 808190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite repression of chloroplast development in Euglena.
    Monroy AF; Schwartzbach SD
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2786-90. PubMed ID: 16578776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of x-rays and inhibitors of protein synthesis on the synthesis of chlorophyll and NADP-linked glyceraldehyde 3-phosphate dehydrogenase in greening Euglena gracilis].
    Theiss-Seuberling HB
    Arch Mikrobiol; 1973; 92(4):331-44. PubMed ID: 4130095
    [No Abstract]   [Full Text] [Related]  

  • 8. Light-induced Enzyme Formation in a Chlorophyll-less Mutant of Euglena gracilis.
    Russell GK; Draffan AG
    Plant Physiol; 1978 Nov; 62(5):678-82. PubMed ID: 16660582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of fumarase in resting Euglena.
    Horrum MA; Schwartzbach SD
    Biochim Biophys Acta; 1982 Feb; 714(3):407-14. PubMed ID: 6800407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of the lag period in chloroplast development in a chlorophyll mutant of peanuts.
    Benedict CR; Ketring DL; Tomas RN
    Plant Physiol; 1974 Feb; 53(2):233-40. PubMed ID: 16658682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMINO GROUP FORMATION AND GLUTAMATE SYNTHESIS IN STREPTOCOCCUS BOVIS.
    BURCHALL JJ; NIEDERMAN RA; WOLIN MJ
    J Bacteriol; 1964 Oct; 88(4):1038-44. PubMed ID: 14219016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulation of synthesis of mitochondrial enzymes in regreening and division-synchronized Euglena cultures.
    Cannons A; Merrett MJ
    Planta; 1983 Oct; 159(2):125-9. PubMed ID: 24258132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. delta-Aminolevulinic Acid Synthase of Euglena gracilis: Regulation of Activity.
    Foley T; Dzelzkalns V; Beale SI
    Plant Physiol; 1982 Jul; 70(1):219-26. PubMed ID: 16662450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malate dehydrogenase isoenzymes in division synchronized cultures of euglena.
    Davis B; Merrett MJ
    Plant Physiol; 1973 Jun; 51(6):1127-32. PubMed ID: 16658478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Events Surrounding the Early Development of Euglena Chloroplasts: VI. Action Spectra for the Formation of Chlorophyll, Lag Elimination in Chlorophyll Synthesis, and Appearance of TPN-dependent Triose Phosphate Dehydrogenase and Alkaline DNase Activities.
    Egan JM; Dorsky D; Schiff JA
    Plant Physiol; 1975 Aug; 56(2):318-23. PubMed ID: 16659294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid metabolism of manganese-deficient algae. I. Effect of manganese deficiency on the greening and the lipid composition of Euglena gracilis Z.
    Constantopoulos G
    Plant Physiol; 1970 Jan; 45(1):76-80. PubMed ID: 5436328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glyceraldehyde 3-Phosphate Dehydrogenases and Glyoxylate Reductase: I. Their Regulation Under Continuous Red and Far Red Light in the Cotyledons of Sinapis alba L.
    Cerff R
    Plant Physiol; 1973 Jan; 51(1):76-81. PubMed ID: 16658301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiation of yeast sporulation of partial carbon, nitrogen, or phosphate deprivation.
    Freese EB; Chu MI; Freese E
    J Bacteriol; 1982 Mar; 149(3):840-51. PubMed ID: 7037742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Events Surrounding the Early Development of Euglena Chloroplasts: 7. Inhibition of Carotenoid Biosynthesis by the Herbicide SAN 9789 (4-Chloro-5-(methylamino)-2-(alpha,alpha,alpha,-trifluoro-m-tolyl)-3-(2H)pyridazinone) and Its Developmental Consequences.
    Vaisberg AJ; Schiff JA
    Plant Physiol; 1976 Feb; 57(2):260-9. PubMed ID: 16659463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Events surrounding the early development of Euglena chloroplasts. I. Induction by preillumination.
    Holowinsky AW; Schiff JA
    Plant Physiol; 1970 Mar; 45(3):339-47. PubMed ID: 5423472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.