These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 16661260)
1. Malate Decarboxylation by Kalanchoë daigremontiana Mitochondria and Its Role in Crassulacean Acid Metabolism. Day DA Plant Physiol; 1980 Apr; 65(4):675-9. PubMed ID: 16661260 [TBL] [Abstract][Full Text] [Related]
2. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme). Cook RM; Lindsay JG; Wilkins MB; Nimmo HG Plant Physiol; 1995 Dec; 109(4):1301-1307. PubMed ID: 12228671 [TBL] [Abstract][Full Text] [Related]
3. Measurements of the Engagement of Cyanide-Resistant Respiration in the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana with the Use of On-Line Oxygen Isotope Discrimination. Robinson SA; Yakir D; Ribas-Carbo M; Giles L; Osmond CB; Siedow JN; Berry JA Plant Physiol; 1992 Nov; 100(3):1087-91. PubMed ID: 16653089 [TBL] [Abstract][Full Text] [Related]
4. Malate Metabolism in Leaf Mitochondria from the Crassulacean Acid Metabolism Plant Kalanchoë blossfeldiana Poelln. Rustin P; Lance C Plant Physiol; 1986 Aug; 81(4):1039-43. PubMed ID: 16664940 [TBL] [Abstract][Full Text] [Related]
5. CO(2) Assimilation and Malate Decarboxylation by Isolated Bundle Sheath Chloroplasts from Zea mays. Boag S; Jenkins CL Plant Physiol; 1985 Sep; 79(1):165-70. PubMed ID: 16664363 [TBL] [Abstract][Full Text] [Related]
6. Perturbations of malate accumulation and the endogenous rhythms of gas exchange in the Crassulacean acid metabolism plant Kalanchoë daigremontiana: testing the tonoplast-as-oscillator model. Wyka TP; Bohn A; Duarte HM; Kaiser F; Lüttge UE Planta; 2004 Aug; 219(4):705-13. PubMed ID: 15127301 [TBL] [Abstract][Full Text] [Related]
7. Malate oxidation, rotenone-resistance, and alternative path activity in plant mitochondria. Wiskich JT; Day DA Plant Physiol; 1982 Oct; 70(4):959-64. PubMed ID: 16662651 [TBL] [Abstract][Full Text] [Related]
8. Malate metabolism in Hoya carnosa mitochondria and its role in photosynthesis during CAM phase III. Hong HT; Nose A; Agarie S; Yoshida T J Exp Bot; 2008; 59(7):1819-27. PubMed ID: 18403382 [TBL] [Abstract][Full Text] [Related]
9. Effects of light quantity and quality on the decarboxylation of malic Acid in crassulacean Acid metabolism photosynthesis. Barrow SR; Cockburn W Plant Physiol; 1982 Mar; 69(3):568-71. PubMed ID: 16662250 [TBL] [Abstract][Full Text] [Related]
10. Isolation, properties and role in progesterone biosynthesis of cytosolic malic enzyme from human term placenta. Swierczynski J; Zelewski M; Zołnierowicz S; Klimek J; Marszałek J; Zelewski L Placenta; 1987; 8(2):175-84. PubMed ID: 3615376 [TBL] [Abstract][Full Text] [Related]
11. Isolation and Oxidative Properties of Intact Mitochondria from the Leaves of Sedum praealtum: A Crassulacean Acid Metabolism Plant. Arron GP; Spalding MH; Edwards GE Plant Physiol; 1979 Aug; 64(2):182-6. PubMed ID: 16660928 [TBL] [Abstract][Full Text] [Related]
12. Diurnal Changes in Metabolite Levels and Crassulacean Acid Metabolism in Kalanchoë daigremontiana Leaves. Kenyon WH; Holaday AS; Black CC Plant Physiol; 1981 Nov; 68(5):1002-7. PubMed ID: 16662040 [TBL] [Abstract][Full Text] [Related]
13. Proton and anion transport at the tonoplast in crassulacean-acid-metabolism plants: specificity of the malate-influx system in Kalanchoë daigremontiana. White PJ; Smith JA Planta; 1989 Sep; 179(2):265-74. PubMed ID: 24201527 [TBL] [Abstract][Full Text] [Related]
14. Changes in oxidative properties of Kalanchoe blossfeldiana leaf mitochondria during development of Crassulacean acid metabolism. Rustin P; Queiroz-Claret C Planta; 1985 Jun; 164(3):415-22. PubMed ID: 24249613 [TBL] [Abstract][Full Text] [Related]
15. Effects of osmotic gradients on vacuolar malic Acid storage: a basic principle in oscillatory behavior of crassulacean Acid metabolism. Lüttge U; Kluge M; Ball E Plant Physiol; 1975 Nov; 56(5):613-6. PubMed ID: 16659355 [TBL] [Abstract][Full Text] [Related]
16. Day/Night Changes in the Sensitivity of Phosphoenolpyruvate Carboxylase to Malate during Crassulacean Acid Metabolism. Winter K Plant Physiol; 1980 May; 65(5):792-6. PubMed ID: 16661284 [TBL] [Abstract][Full Text] [Related]
17. A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoë daigremontiana and K. pinnata. Chen LS; Lin Q; Nose A J Exp Bot; 2002 Feb; 53(367):341-50. PubMed ID: 11807138 [TBL] [Abstract][Full Text] [Related]
18. Crassulacean acid metabolism (CAM) in Kalanchoë: Changes in intercellular CO2 concentration during a normal CAM cycle and during cycles in continuous light or darkness. Kluge M; Böhlke C; Queiroz O Planta; 1981 May; 152(1):87-92. PubMed ID: 24302324 [TBL] [Abstract][Full Text] [Related]
19. Photosynthesis in Phosphoenolpyruvate carboxykinase-type C4 plants: mechanism and regulation of C4 acid decarboxylation in bundle sheath cells. Carnal NW; Agostino A; Hatch MD Arch Biochem Biophys; 1993 Nov; 306(2):360-7. PubMed ID: 8215437 [TBL] [Abstract][Full Text] [Related]
20. Vacuolar malate uptake is mediated by an anion-selective inward rectifier. Hafke JB; Hafke Y; Smith JA; Lüttge U; Thiel G Plant J; 2003 Jul; 35(1):116-28. PubMed ID: 12834407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]