These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16661448)

  • 1. Uptake and subcellular compartmentation of gibberellin a(1) applied to leaves of barley and cowpea.
    Ohlrogge JB; García-Martínez JL; Adams D; Rappaport L
    Plant Physiol; 1980 Sep; 66(3):422-7. PubMed ID: 16661448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential compartmentation of gibberellin a(1) and its metabolites in vacuoles of cowpea and barley leaves.
    Garcia-Martinez JL
    Plant Physiol; 1981 Oct; 68(4):865-7. PubMed ID: 16662014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of gibberellin a(1) in cowpea membrane vesicles.
    O'neill SD; Keith B; Rappaport L
    Plant Physiol; 1986 Apr; 80(4):812-7. PubMed ID: 16664723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolytic enzymes in the central vacuole of plant cells.
    Boller T; Kende H
    Plant Physiol; 1979 Jun; 63(6):1123-32. PubMed ID: 16660869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular localization of proteases in wheat and corn mesophyll protoplasts.
    Lin W; Wittenbach VA
    Plant Physiol; 1981 May; 67(5):969-72. PubMed ID: 16661803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and subcellular localization of polyamines in carrot protoplasts and vacuoles.
    Pistocchi R; Keller F; Bagni N; Matile P
    Plant Physiol; 1988 Jun; 87(2):514-8. PubMed ID: 16666174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular distribution of acetyl-coenzyme A carboxylase in mesophyll cells of barley and sorghum leaves.
    Nikolau BJ; Wurtele ES; Stumpf PK
    Arch Biochem Biophys; 1984 Dec; 235(2):555-61. PubMed ID: 6151378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet : characterization of proton-transport and ATPase in tonoplast vesicles.
    Poole RJ; Briskin DP; Krátký Z; Johnstone RM
    Plant Physiol; 1984 Mar; 74(3):549-56. PubMed ID: 16663459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino Acid Transport across the Tonoplast of Vacuoles Isolated from Barley Mesophyll Protoplasts : Uptake of Alanine, Leucine, and Glutamine.
    Dietz KJ; Jäger R; Kaiser G; Martinoia E
    Plant Physiol; 1990 Jan; 92(1):123-9. PubMed ID: 16667233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuolar Localization of Endoproteinases EP(1) and EP(2) in Barley Mesophyll Cells.
    Thayer SS; Huffaker RC
    Plant Physiol; 1984 May; 75(1):70-3. PubMed ID: 16663604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sucrose transport into vacuoles isolated from barley mesophyll protoplasts.
    Kaiser G; Heber U
    Planta; 1984 Nov; 161(6):562-8. PubMed ID: 24253927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of Ascorbic and Dehydroascorbic Acids across Protoplast and Vacuole Membranes Isolated from Barley (Hordeum vulgare L. cv Gerbel) Leaves.
    Rautenkranz A; Li L; Machler F; Martinoia E; Oertli JJ
    Plant Physiol; 1994 Sep; 106(1):187-193. PubMed ID: 12232318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves.
    Mimura T; Dietz KJ; Kaiser W; Schramm MJ; Kaiser G; Heber U
    Planta; 1990 Jan; 180(2):139-46. PubMed ID: 24201937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypeptide pattern and enzymic character of vacuoles isolated from barley mesophyll protoplasts.
    Kaiser G; Martinoia E; Schmitt JM; Hincha DK; Heber U
    Planta; 1986 Nov; 169(3):345-55. PubMed ID: 24232646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of anions in isolated barley vacuoles : I. Permeability to anions and evidence for a cl-uptake system.
    Martinoia E; Schramm MJ; Kaiser G; Kaiser WM; Heber U
    Plant Physiol; 1986 Apr; 80(4):895-901. PubMed ID: 16664738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of plasma membranes from roots of barley: specificity of the phosphotungstic Acid-chromic Acid stain.
    Nagahashi G; Leonard RT; Thomson WW
    Plant Physiol; 1978 Jun; 61(6):993-9. PubMed ID: 16660441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular localization of acid proteinase in barley mesophyll protoplasts.
    Heck U; Martinoia E; Matile P
    Planta; 1981 Feb; 151(2):198-200. PubMed ID: 24301729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of coumarylglucosides in vacuoles of barley mesophyll protoplasts.
    Werner C; Matile P
    J Plant Physiol; 1985 Mar; 118(3):237-49. PubMed ID: 23196008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.