These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16661456)

  • 1. Quantum Requirement for Photosynthesis in Sedum praealtum during Two Phases of Crassulacean Acid Metabolism.
    Spalding MH; Edwards GE
    Plant Physiol; 1980 Sep; 66(3):463-5. PubMed ID: 16661456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthesis in Isolated Chloroplasts of the Crassulacean Acid Metabolism Plant Sedum praealtum.
    Spalding MH; Edwards GE
    Plant Physiol; 1980 Jun; 65(6):1044-8. PubMed ID: 16661327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis.
    Pedersen O; Rich SM; Pulido C; Cawthray GR; Colmer TD
    New Phytol; 2011 Apr; 190(2):332-9. PubMed ID: 21062288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and Oxidative Properties of Intact Mitochondria from the Leaves of Sedum praealtum: A Crassulacean Acid Metabolism Plant.
    Arron GP; Spalding MH; Edwards GE
    Plant Physiol; 1979 Aug; 64(2):182-6. PubMed ID: 16660928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malate decarboxylation in isolated mitochondria from the Crassulacean acid metabolism plant Sedum praealtum.
    Spalding MH; Arron GP; Edwards GE
    Arch Biochem Biophys; 1980 Feb; 199(2):448-56. PubMed ID: 7189104
    [No Abstract]   [Full Text] [Related]  

  • 6. Quantum Yields of CAM Plants Measured by Photosynthetic O(2) Exchange.
    Adams WW; Nishida K; Osmond CB
    Plant Physiol; 1986 May; 81(1):297-300. PubMed ID: 16664793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced Glutathione as an Effector of Phosphoenolpyruvate Carboxylase of the Crassulacean Acid Metabolism Plant Sedum praealtum D.C.
    Manetas Y; Gavalas NA
    Plant Physiol; 1983 Jan; 71(1):187-9. PubMed ID: 16662783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship of CO2 assimilation pathways and photorespiration to the physiological quantum requirement of green plant photosynthesis.
    Campbell WH; Black CC
    Biosystems; 1978 Aug; 10(3):253-64. PubMed ID: 719139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular Localization of Some Key Enzymes of Crassulacean Acid Metabolism in Sedum praealtum.
    Spalding MH; Schmitt MR; Ku SB; Edwards GE
    Plant Physiol; 1979 Apr; 63(4):738-43. PubMed ID: 16660803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crassulacean acid metabolism photosynthesis: ;working the night shift'.
    Black CC; Osmond CB
    Photosynth Res; 2003; 76(1-3):329-41. PubMed ID: 16228591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of adenosine phosphates and magnesium on photosynthesis in chloroplasts from peas, sedum, and spinach.
    Piazza GJ; Gibbs M
    Plant Physiol; 1983 Mar; 71(3):680-7. PubMed ID: 16662888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the Long-Term Elevation of CO(2) Concentration in the Field on the Quantum Yield of Photosynthesis of the C(3) Sedge, Scirpus olneyi.
    Long SP; Drake BG
    Plant Physiol; 1991 May; 96(1):221-6. PubMed ID: 16668155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO(2) and O(2) Exchanges in the CAM Plant Ananas comosus (L.) Merr: Determination of Total and Malate-Decorboxylation-Dependent CO(2)-Assimilation Rates; Study of Light O(2)-Uptake.
    Cote FX; Andre M; Folliot M; Massimino D; Daguenet A
    Plant Physiol; 1989 Jan; 89(1):61-8. PubMed ID: 16666547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of Rubisco Activity during the Diurnal Phases of the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana.
    Maxwell K; Borland AM; Haslam RP; Helliker BR; Roberts A; Griffiths H
    Plant Physiol; 1999 Nov; 121(3):849-856. PubMed ID: 10557233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postillumination burst of carbon dioxide in crassalacean Acid metabolism plants.
    Crews CE; Vines HM; Black CC
    Plant Physiol; 1975 Apr; 55(4):652-7. PubMed ID: 16659142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Photosynthesis and Stomatal Conductance in Ricinus communis L. (Castor Bean) by Leaf to Air Vapor Pressure Deficit.
    Dai Z; Edwards GE; Ku MS
    Plant Physiol; 1992 Aug; 99(4):1426-34. PubMed ID: 16669054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of the Engagement of Cyanide-Resistant Respiration in the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana with the Use of On-Line Oxygen Isotope Discrimination.
    Robinson SA; Yakir D; Ribas-Carbo M; Giles L; Osmond CB; Siedow JN; Berry JA
    Plant Physiol; 1992 Nov; 100(3):1087-91. PubMed ID: 16653089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Formation and Distribution of Photosynthetic Products by Sedum praealtum Chloroplasts.
    Piazza GJ; Smith MG; Gibbs M
    Plant Physiol; 1982 Dec; 70(6):1748-58. PubMed ID: 16662756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO(2)-concentrating: consequences in crassulacean acid metabolism.
    Lüttge U
    J Exp Bot; 2002 Nov; 53(378):2131-42. PubMed ID: 12379779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between Photosynthetically Active Radiation, Nocturnal Acid Accumulation, and CO(2) Uptake for a Crassulacean Acid Metabolism Plant, Opuntia ficus-indica.
    Nobel PS; Hartsock TL
    Plant Physiol; 1983 Jan; 71(1):71-5. PubMed ID: 16662802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.