BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16661495)

  • 1. Long Chain (C(20) and C(22)) Fatty Acid Biosynthesis in Developing Seeds of Tropaeolum majus: AN IN VIVO STUDY.
    Pollard MR; Stumpf PK
    Plant Physiol; 1980 Oct; 66(4):641-8. PubMed ID: 16661495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of C(20) and C(22) Fatty Acids by Developing Seeds of Limnanthes alba: CHAIN ELONGATION AND Delta5 DESATURATION.
    Pollard MR; Stumpf PK
    Plant Physiol; 1980 Oct; 66(4):649-55. PubMed ID: 16661496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The incorporation, modification and turnover of fatty acids in adult Schistosoma mansoni.
    Brouwers JF; Smeenk IM; van Golde LM; Tielens AG
    Mol Biochem Parasitol; 1997 Sep; 88(1-2):175-85. PubMed ID: 9274878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation and utilization of palmitate, stearate, oleate and acetate by the mammary gland of the fed goat in relation to their overall metabolism, and the role of plasma phospholipids and neutral lipids in milk-fat synthesis.
    Annison EF; Linzell JL; Fazakerley S; Nichols BW
    Biochem J; 1967 Mar; 102(3):637-47. PubMed ID: 16742475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid.
    Mietkiewska E; Giblin EM; Wang S; Barton DL; Dirpaul J; Brost JM; Katavic V; Taylor DC
    Plant Physiol; 2004 Sep; 136(1):2665-75. PubMed ID: 15333757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The regulation of triacylglycerol biosynthesis in cocoa (Theobroma cacao) L.
    Griffiths G; Harwood JL
    Planta; 1991 May; 184(2):279-84. PubMed ID: 24194081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (13)C NMR characterization of triacylglycerols of Moringa oleifera seed oil: an "oleic-vaccenic acid" oil.
    Vlahov G; Chepkwony PK; Ndalut PK
    J Agric Food Chem; 2002 Feb; 50(5):970-5. PubMed ID: 11853466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Garden nasturtium (Tropaeolum majus L.) - a source of mineral elements and bioactive compounds.
    Jakubczyk K; Janda K; Watychowicz K; Łukasiak J; Wolska J
    Rocz Panstw Zakl Hig; 2018; 69(2):119-126. PubMed ID: 29766690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of (n-9) and (n-7) cis-monounsaturated fatty acids in seeds of higher plants.
    Mukherjee KD; Kiewitt I
    Planta; 1980 Oct; 149(5):461-3. PubMed ID: 24306473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content.
    Xu J; Francis T; Mietkiewska E; Giblin EM; Barton DL; Zhang Y; Zhang M; Taylor DC
    Plant Biotechnol J; 2008 Oct; 6(8):799-818. PubMed ID: 18631243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of rat long chain acyl-coa synthetase 1 alters fatty acid metabolism in rat primary hepatocytes.
    Li LO; Mashek DG; An J; Doughman SD; Newgard CB; Coleman RA
    J Biol Chem; 2006 Dec; 281(48):37246-55. PubMed ID: 17028193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia).
    Ghosh SK; Bhattacharjee A; Jha JK; Mondal AK; Maiti MK; Basu A; Ghosh D; Ghosh S; Sen SK
    Plant Physiol Biochem; 2007 Dec; 45(12):887-97. PubMed ID: 17977002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xyloglucan (amyloid) formation in the cotyledons of Tropaeolum majus L. seeds.
    Hoth A; Blaschek W; Franz G
    Plant Cell Rep; 1986 Feb; 5(1):9-12. PubMed ID: 24247955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid labeling from acetate or glycerol in cultured embryos of Camelina sativa seeds: A tale of two substrates.
    Pollard M; Delamarter D; Martin TM; Shachar-Hill Y
    Phytochemistry; 2015 Oct; 118():192-203. PubMed ID: 26265565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the acyl-CoA pool in the synthesis of polyunsaturated 18-carbon fatty acids and triacylglycerol production in the microsomes of developing safflower seeds.
    Stymne S; Stobart AK; Glad G
    Biochim Biophys Acta; 1983 Jul; 752(2):198-208. PubMed ID: 6860695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitors of fatty acid biosynthesis in sunflower seeds.
    Pleite R; Martínez-Force E; Garcés R
    J Plant Physiol; 2006 Sep; 163(9):885-94. PubMed ID: 16500723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stearic acid unlike shorter-chain saturated fatty acids is poorly utilized for triacylglycerol synthesis and beta-oxidation in cultured rat hepatocytes.
    Pai T; Yeh YY
    Lipids; 1996 Feb; 31(2):159-64. PubMed ID: 8835403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-14C] acetate and [2-3H] glycerol.
    Slack CR; Roughan PG; Balasingham N
    Biochem J; 1978 Feb; 170(2):421-33. PubMed ID: 580379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of an endothermic transition in the Arrhenius plot of fatty acid uptake by lipid-depleted ascites tumor cells.
    Haeffner EW; Friedel R
    Biochim Biophys Acta; 1989 Sep; 1005(1):27-33. PubMed ID: 2775760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata.
    Bafor M; Jonsson L; Stobart AK; Stymne S
    Biochem J; 1990 Nov; 272(1):31-8. PubMed ID: 2264835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.