BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16661496)

  • 1. Biosynthesis of C(20) and C(22) Fatty Acids by Developing Seeds of Limnanthes alba: CHAIN ELONGATION AND Delta5 DESATURATION.
    Pollard MR; Stumpf PK
    Plant Physiol; 1980 Oct; 66(4):649-55. PubMed ID: 16661496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long Chain (C(20) and C(22)) Fatty Acid Biosynthesis in Developing Seeds of Tropaeolum majus: AN IN VIVO STUDY.
    Pollard MR; Stumpf PK
    Plant Physiol; 1980 Oct; 66(4):641-8. PubMed ID: 16661495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genes affecting novel seed constituents in Limnanthes alba Benth: transcriptome analysis of developing embryos and a new genetic map of meadowfoam.
    Slabaugh MB; Cooper LD; Kishore VK; Knapp SJ; Kling JG
    PeerJ; 2015; 3():e915. PubMed ID: 26038713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delta5-olefinic acids in the seed lipids from four Ephedra species and their distribution between the alpha and beta positions of triacylglycerols. Characteristics common to coniferophytes and cycadophytes.
    Wolff RL; Christie WW; Pédrono F; Marpeau AM; Tsevegsüren N; Aitzetmüller K; Gunstone FD
    Lipids; 1999 Aug; 34(8):855-64. PubMed ID: 10529097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of fatty acid components of meadowfoam oil in somatic soybean embryos.
    Cahoon EB; Marillia EF; Stecca KL; Hall SE; Taylor DC; Kinney AJ
    Plant Physiol; 2000 Sep; 124(1):243-51. PubMed ID: 10982439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid biosynthesis in Erlich cells. The mechanism of short term control by exogenous free fatty acids.
    McGee R; Spector AA
    J Biol Chem; 1975 Jul; 250(14):5419-25. PubMed ID: 237919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid biosynthesis in developing mustard seed: formation of triacylglycerols from endogenous and exogenous Fatty acids.
    Mukherjee KD
    Plant Physiol; 1983 Dec; 73(4):929-34. PubMed ID: 16663345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of trans-acids on desaturation and elongation of fatty acids in developing brain.
    Cook HW
    Lipids; 1981 Dec; 16(12):920-6. PubMed ID: 7329212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organ- and development-specific acyl coenzyme a lysophosphatidate acyltransferases in palm and meadowfoam.
    Laurent P; Huang AH
    Plant Physiol; 1992 Aug; 99(4):1711-5. PubMed ID: 16669099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arachidonic, eicosapentaenoic, and biosynthetically related fatty acids in the seed lipids from a primitive gymnosperm, Agathis robusta.
    Wolff RL; Christie WW; Pédrono F; Marpeau AM
    Lipids; 1999 Oct; 34(10):1083-97. PubMed ID: 10580336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysophosphatidate Acyltransferase in the Microsomes from Maturing Seeds of Meadowfoam (Limnanthes alba).
    Cao YZ; Oo KC; Huang AH
    Plant Physiol; 1990 Nov; 94(3):1199-206. PubMed ID: 16667817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulation of triacylglycerol biosynthesis in cocoa (Theobroma cacao) L.
    Griffiths G; Harwood JL
    Planta; 1991 May; 184(2):279-84. PubMed ID: 24194081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxidation and utilization of palmitate, stearate, oleate and acetate by the mammary gland of the fed goat in relation to their overall metabolism, and the role of plasma phospholipids and neutral lipids in milk-fat synthesis.
    Annison EF; Linzell JL; Fazakerley S; Nichols BW
    Biochem J; 1967 Mar; 102(3):637-47. PubMed ID: 16742475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry and gas chromatography-flame ionization detection characterization of Delta5-polyenoic fatty acids in triacylglycerols from conifer seed oils.
    Lísa M; Holcapek M; Rezanka T; Kabátová N
    J Chromatogr A; 2007 Mar; 1146(1):67-77. PubMed ID: 17307191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of triacylglycerols containing very long chain monounsaturated acyl moieties in developing seeds.
    Fehling E; Murphy DJ; Mukherjee KD
    Plant Physiol; 1990 Oct; 94(2):492-8. PubMed ID: 16667739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the acyl-CoA pool in the synthesis of polyunsaturated 18-carbon fatty acids and triacylglycerol production in the microsomes of developing safflower seeds.
    Stymne S; Stobart AK; Glad G
    Biochim Biophys Acta; 1983 Jul; 752(2):198-208. PubMed ID: 6860695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia).
    Ghosh SK; Bhattacharjee A; Jha JK; Mondal AK; Maiti MK; Basu A; Ghosh D; Ghosh S; Sen SK
    Plant Physiol Biochem; 2007 Dec; 45(12):887-97. PubMed ID: 17977002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid biosynthesis by a particulate preparation from germinating pea.
    Bolton P; Harwood JL
    Biochem J; 1977 Nov; 168(2):261-9. PubMed ID: 579600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of saturated fatty acids by Paramecium tetraurelia.
    Rhoads DE; Honer-Schmid O; Kaneshiro ES
    J Lipid Res; 1987 Dec; 28(12):1424-33. PubMed ID: 3430068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds.
    Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB
    Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.