These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16661546)

  • 1. Alkali Cation/Sucrose Co-transport in the Root Sink of Sugar Beet.
    Saftner RA; Wyse RE
    Plant Physiol; 1980 Nov; 66(5):884-9. PubMed ID: 16661546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sucrose uptake and compartmentation in sugar beet taproot tissue.
    Saftner RA; Daie J; Wyse RE
    Plant Physiol; 1983 May; 72(1):1-6. PubMed ID: 16662941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet : characterization of proton-transport and ATPase in tonoplast vesicles.
    Poole RJ; Briskin DP; Krátký Z; Johnstone RM
    Plant Physiol; 1984 Mar; 74(3):549-56. PubMed ID: 16663459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of plant hormones on sucrose uptake by sugar beet root tissue discs.
    Saftner RA; Wyse RE
    Plant Physiol; 1984 Apr; 74(4):951-5. PubMed ID: 16663540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sucrose uptake by sugar beet tap root tissue.
    Wyse R
    Plant Physiol; 1979 Nov; 64(5):837-41. PubMed ID: 16661065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sink Metabolism in Tomato Fruit : II. Phloem Unloading and Sugar Uptake.
    Damon S; Hewitt J; Nieder M; Bennett AB
    Plant Physiol; 1988 Jul; 87(3):731-6. PubMed ID: 16666216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton-Coupled Sucrose Transport in Plasmalemma Vesicles Isolated from Sugar Beet (Beta vulgaris L. cv Great Western) Leaves.
    Bush DR
    Plant Physiol; 1989 Apr; 89(4):1318-23. PubMed ID: 16666703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turgor regulation of sucrose transport in sugar beet taproot tissue.
    Wyse RE; Zamski E; Tomos AD
    Plant Physiol; 1986 Jun; 81(2):478-81. PubMed ID: 16664841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inorganic cation dependence of putrescine and spermidine transport in human breast cancer cells.
    Poulin R; Lessard M; Zhao C
    J Biol Chem; 1995 Jan; 270(4):1695-704. PubMed ID: 7530245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surcose transport in isolated plasma-membrane vesicles from sugar beet (Beta vulgaris L.) Evidence for an electrogenic sucrose-proton symport.
    Buckhout TJ
    Planta; 1989 Jun; 178(3):393-9. PubMed ID: 24212906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sucrose uptake and partitioning in discs derived from source versus sink potato tubers.
    Wright KM; Oparka KJ
    Planta; 1989 Feb; 177(2):237-44. PubMed ID: 24212346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of sucrose efflux from soybean leaf discs.
    Secor J
    Plant Physiol; 1987 Jan; 83(1):143-8. PubMed ID: 16665190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of sugar uptake by sugarcane suspension cells.
    Komor E; Thom M; Maretzki A
    Planta; 1981 Oct; 153(2):181-92. PubMed ID: 24276769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrogenicity, pH-Dependence, and Stoichiometry of the Proton-Sucrose Symport.
    Bush DR
    Plant Physiol; 1990 Aug; 93(4):1590-6. PubMed ID: 16667661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of metal ion free valinomycin-carbonyl cyanide m-chlorophenylhydrazone complex in the enhancement of the rates of gramicidin facilitated net H+, Li+ and Na+ transport across phospholipid vesicular membrane.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1997 Jan; 1323(1):137-44. PubMed ID: 9030220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose transport in tonoplast vesicles of red beet roots is linked to ATP hydrolysis.
    Getz HP
    Planta; 1991 Sep; 185(2):261-8. PubMed ID: 24186350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that glucose and sucrose uptake in oral streptococcal bacteria involves independent phosphotransferase and proton-motive force-mediated mechanisms.
    Keevil CW; Williamson MI; Marsh PD; Ellwood DC
    Arch Oral Biol; 1984; 29(11):871-8. PubMed ID: 6097204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroneutral, HCO3(-)-independent, pH gradient-dependent uphill transport of Cl- by ileal brush-border membrane vesicles. Possible role in the pathogenesis of chloridorrhea.
    Vasseur M; Caüzac M; Alvarado F
    Biochem J; 1989 Nov; 263(3):775-84. PubMed ID: 2597129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of solute/proton cotransport in plasma membrane vesicles from Ricinus cotyledons, and a comparison with other tissues.
    Williams LE; Nelson SJ; Hall JL
    Planta; 1992 Mar; 186(4):541-50. PubMed ID: 24186784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symport of proton and sucrose in plasma membrane vesicles isolated from spinach leaves.
    Slone JH; Buckhout TJ; Vanderwoude WJ
    Plant Physiol; 1991 Jun; 96(2):615-8. PubMed ID: 16668230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.