These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 16661577)
1. Investigation of the H(2) Oxidation System in Rhizobium japonicum 122 DES Nodule Bacteroids. Emerich DW; Ruiz-Argüeso T; Russell SA; Evans HJ Plant Physiol; 1980 Dec; 66(6):1061-6. PubMed ID: 16661577 [TBL] [Abstract][Full Text] [Related]
2. Carriers in electron transport from molecular hydrogen to oxygen in Rhizobium japonicum bacteroids. Eisbrenner G; Evans HJ J Bacteriol; 1982 Mar; 149(3):1005-12. PubMed ID: 6277845 [TBL] [Abstract][Full Text] [Related]
4. Oxyleghemoglobin-mediated Hydrogen Oxidation by Rhizobium japonicum USDA 122 DES Bacteroids. Emerich DW; Albrecht SL; Russell SA; Ching T; Evans HJ Plant Physiol; 1980 Apr; 65(4):605-9. PubMed ID: 16661247 [TBL] [Abstract][Full Text] [Related]
5. Molybdate transport by Bradyrhizobium japonicum bacteroids. Maier RJ; Graham L J Bacteriol; 1988 Dec; 170(12):5613-9. PubMed ID: 3192511 [TBL] [Abstract][Full Text] [Related]
6. Involvement of cytochromes and a flavoprotein in hydrogen oxidation in Rhizobium japonicum bacteroids. O'Brian MR; Maier RJ J Bacteriol; 1983 Aug; 155(2):481-7. PubMed ID: 6874637 [TBL] [Abstract][Full Text] [Related]
7. Kinetic mechanism of the hydrogen-oxidizing hydrogenase from soybean nodule bacteroids. Arp DJ; Burris RH Biochemistry; 1981 Apr; 20(8):2234-40. PubMed ID: 7016176 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of a ferredoxin from Rhizobium japonicum bacteroids. Carter KR; Rawlings J; Orme-Johnson WH; Becker RR; Evans HJ J Biol Chem; 1980 May; 255(9):4213-23. PubMed ID: 6246115 [TBL] [Abstract][Full Text] [Related]
9. Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. Fougère F; Le Rudulier D J Gen Microbiol; 1990 Jan; 136(1):157-63. PubMed ID: 2351954 [TBL] [Abstract][Full Text] [Related]
10. Electron allocation to H+ and N2 by nitrogenase in Rhizobium leguminosarum bacteroids. Haaker H; Wassink H Eur J Biochem; 1984 Jul; 142(1):37-42. PubMed ID: 6589160 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen inhibition of nitrogen reduction by nitrogenase in isolated soybean nodule bacteroids. Rasche ME; Arp DJ Plant Physiol; 1989 Oct; 91(2):663-8. PubMed ID: 16667084 [TBL] [Abstract][Full Text] [Related]
12. Transport of dicarboxylic acids in castor bean mitochondria. Chappell J; Beevers H Plant Physiol; 1983 Jun; 72(2):434-40. PubMed ID: 16663021 [TBL] [Abstract][Full Text] [Related]
13. Uptake hydrogenase activity and ATP formation in Rhizobium leguminosarum bacteroids. Nelson LM; Salminen SO J Bacteriol; 1982 Aug; 151(2):989-95. PubMed ID: 7047503 [TBL] [Abstract][Full Text] [Related]
14. Electron transport components involved in hydrogen oxidation in free-living Rhizobium japonicum. O'Brian MR; Maier RJ J Bacteriol; 1982 Oct; 152(1):422-30. PubMed ID: 6288665 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of Two Pathways for Malate Oxidation in Bacteroids Isolated from Sesbania rostrata Stem Nodules during C(2)H(2) Reduction. Trinchant JC; Rigaud J Plant Physiol; 1990 Nov; 94(3):1002-8. PubMed ID: 16667788 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen Evolution from Alfalfa and Clover Nodules and Hydrogen Uptake by Free-Living Rhizobium meliloti. Ruiz-Argüeso T; Maier RJ; Evans HJ Appl Environ Microbiol; 1979 Mar; 37(3):582-7. PubMed ID: 16345361 [TBL] [Abstract][Full Text] [Related]
17. Pyrroline-5-Carboxylate Reductase in Soybean Nodules : Comparison of the Enzymes in Host Cytosol, Bradyrhizobium japonicum Bacteroids, and Cultures. Chilson OP; Kelly-Chilson AE; Schneider JD Plant Physiol; 1992 May; 99(1):119-23. PubMed ID: 16668837 [TBL] [Abstract][Full Text] [Related]