BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16661710)

  • 1. Stomatal Response and Leaf Injury of Pisum sativum L. with SO(2) and O(3) Exposures : I. INFLUENCE OF POLLUTANT LEVEL AND LEAF MATURITY.
    Olszyk DM; Tibbitts TW
    Plant Physiol; 1981 Mar; 67(3):539-44. PubMed ID: 16661710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal Response and Leaf Injury of Pisum sativum L. with SO(2) and O(3) Exposures : II. INFLUENCE OF MOISTURE STRESS AND TIME OF EXPOSURE.
    Olszyk DM; Tibbitts TW
    Plant Physiol; 1981 Mar; 67(3):545-9. PubMed ID: 16661711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of Adaxial and Abaxial Stomata of Normally Oriented and Inverted Leaves of Vicia faba L. to Light.
    Yera R; Davis S; Frazer J; Tallman G
    Plant Physiol; 1986 Oct; 82(2):384-9. PubMed ID: 16665038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytotoxicity of Air Pollutants: Evidence for the Photodetoxification of SO(2) but Not O(3).
    Olszyk DM; Tingey DT
    Plant Physiol; 1984 Apr; 74(4):999-1005. PubMed ID: 16663549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interspecific Variation in SO(2) Flux : Leaf Surface versus Internal Flux, and Components of Leaf Conductance.
    Olszyk DM; Tingey DT
    Plant Physiol; 1985 Dec; 79(4):949-56. PubMed ID: 16664551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L.
    Wang Y; Noguchi K; Terashima I
    Plant Cell Environ; 2008 Sep; 31(9):1307-16. PubMed ID: 18537998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drought stress triggers alterations of adaxial and abaxial stomatal development in basil leaves increasing water-use efficiency.
    Driesen E; De Proft M; Saeys W
    Hortic Res; 2023 Jun; 10(6):uhad075. PubMed ID: 37303614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint Action of O(3) and SO(2) in Modifying Plant Gas Exchange.
    Olszyk DM; Tingey DT
    Plant Physiol; 1986 Oct; 82(2):401-5. PubMed ID: 16665041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity.
    Nejad AR; van Meeteren U
    J Exp Bot; 2007; 58(3):627-36. PubMed ID: 17175553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusicoccin and Air Pollutant Injury to Plants : Evidence for Enhancement of SO(2) but Not O(3) Injury.
    Olszyk DM; Tingey DT
    Plant Physiol; 1984 Oct; 76(2):400-2. PubMed ID: 16663853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foliar uptake of Cd by pea (Pisum sativum) and sugar beet (Beta vulgaris).
    Greger M; Johansson M; Stihl A; Hamza K
    Physiol Plant; 1993 Aug; 88(4):563-570. PubMed ID: 28741769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Basis for Injury to Plants from Combinations of O(3) and SO(2): Studies with Modifiers of Pollutant Toxicity.
    Olszyk DM; Tingey DT
    Plant Physiol; 1985 Apr; 77(4):935-9. PubMed ID: 16664166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana.
    Rezaei Nejad A; van Meeteren U
    J Exp Bot; 2008; 59(2):289-301. PubMed ID: 18238802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves.
    Driscoll SP; Prins A; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2006; 57(2):381-90. PubMed ID: 16371401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of stomatal closure caused by ultraviolet-B radiation.
    Nogues S; Allen DJ; Morison JI; Baker NR
    Plant Physiol; 1999 Oct; 121(2):489-96. PubMed ID: 10517840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.
    McKown AD; Guy RD; Quamme L; Klápště J; La Mantia J; Constabel CP; El-Kassaby YA; Hamelin RC; Zifkin M; Azam MS
    Mol Ecol; 2014 Dec; 23(23):5771-90. PubMed ID: 25319679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis.
    Prats E; Gay AP; Mur LA; Thomas BJ; Carver TL
    J Exp Bot; 2006; 57(10):2211-26. PubMed ID: 16793847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?
    Aliniaeifard S; Malcolm Matamoros P; van Meeteren U
    Physiol Plant; 2014 Dec; 152(4):688-99. PubMed ID: 24773210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stomatal responses of Argenteum - a mutant of Pisum sativum L. with readily detachable leaf epidermis.
    Jewer PC; Incoll LD; Shaw J
    Planta; 1982 Jul; 155(2):146-53. PubMed ID: 24271668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.