BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16661723)

  • 1. Phycobilisome-thylakoid Topography on Photosynthetically Active Vesicles of Porphyridium cruentum.
    Dilworth MF; Gantt E
    Plant Physiol; 1981 Apr; 67(4):608-12. PubMed ID: 16661723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis.
    Katoh T; Gantt E
    Biochim Biophys Acta; 1979 Jun; 546(3):383-93. PubMed ID: 110343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a Purified Photosystem II-Phycobilisome Particle Preparation from Porphyridium cruentum.
    Chereskin BM; Clement-Metral JD; Gantt E
    Plant Physiol; 1985 Mar; 77(3):626-9. PubMed ID: 16664110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A photosystem II-phycobilisome preparation from the red alga, Porphyridium cruentum: oxygen evolution, ultrastructure, and polypeptide resolution.
    Clement-Metral JD; Gantt E; Redlinger T
    Arch Biochem Biophys; 1985 Apr; 238(1):10-7. PubMed ID: 2580484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminus conservation in the terminal pigment of phycobilisomes from a prokaryotic and eukaryotic alga.
    Gantt E; Cunningham FX; Lipschultz CA; Mimuro M
    Plant Physiol; 1988 Apr; 86(4):996-8. PubMed ID: 16666079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stoichiometry of Photosystem I, Photosystem II, and Phycobilisomes in the Red Alga Porphyridium cruentum as a Function of Growth Irradiance.
    Cunningham FX; Dennenberg RJ; Mustardy L; Jursinic PA; Gantt E
    Plant Physiol; 1989 Nov; 91(3):1179-87. PubMed ID: 16667130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment of a 50-kilodalton polypeptide in a photosystem II-phycobilisome particle from Porphyridium cruentum.
    Chereskin BM; Gantt E
    Arch Biochem Biophys; 1986 Nov; 250(2):286-93. PubMed ID: 3535676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phycobilisomes of Porphyridium cruentum. I. Isolation.
    Gantt E; Lipschultz CA
    J Cell Biol; 1972 Aug; 54(2):313-24. PubMed ID: 5040862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth under Red Light Enhances Photosystem II Relative to Photosystem I and Phycobilisomes in the Red Alga Porphyridium cruentum.
    Cunningham FX; Dennenberg RJ; Jursinic PA; Gantt E
    Plant Physiol; 1990 Jul; 93(3):888-95. PubMed ID: 16667597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoacclimation in the Red Alga Porphyridium cruentum: Changes in Photosynthetic Enzymes, Electron Carriers, and Light-Saturated Rate of Photosynthesis as a Function of Irradiance and Spectral Quality.
    Cunningham FX; Vonshak A; Gantt E
    Plant Physiol; 1992 Nov; 100(3):1142-9. PubMed ID: 16653097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A M(r) 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer.
    Redlinger T; Gantt E
    Proc Natl Acad Sci U S A; 1982 Sep; 79(18):5542-6. PubMed ID: 16593227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae.
    Kaňa R; Kotabová E; Lukeš M; Papáček S; Matonoha C; Liu LN; Prášil O; Mullineaux CW
    Plant Physiol; 2014 Aug; 165(4):1618-1631. PubMed ID: 24948833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core substructure of the hemiellipsoidal phycobilisome from the red alga Porphyridium cruentum.
    Redecker D; Wehrmeyer W; Reuter W
    Eur J Cell Biol; 1993 Dec; 62(2):442-50. PubMed ID: 7925499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum.
    Arteni AA; Liu LN; Aartsma TJ; Zhang YZ; Zhou BC; Boekema EJ
    Photosynth Res; 2008; 95(2-3):169-74. PubMed ID: 17922299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phycobilisome Structure of Porphyridium cruentum: POLYPEPTIDE COMPOSITION.
    Redlinger T; Gantt E
    Plant Physiol; 1981 Dec; 68(6):1375-9. PubMed ID: 16662111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional linkage between phycobilisome and reaction center in two phycobilisome oxygen-evolving photosystem II preparations isolated from the thermophilic cyanobacterium Synechococcus sp.
    Kura-Hotta M; Satoh K; Katoh S
    Arch Biochem Biophys; 1986 Aug; 249(1):1-7. PubMed ID: 3090938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Absorption Cross-Sections in Porphyridium cruentum: Implications for Energy Transfer between Phycobilisomes and Photosystem II Reaction Centers.
    Ley AC
    Plant Physiol; 1984 Feb; 74(2):451-4. PubMed ID: 16663442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of Functionally Intact Rhodoplasts from Griffithsia monilis (Ceramiaceae, Rhodophyta).
    Lilley RM
    Plant Physiol; 1981 Jan; 67(1):5-8. PubMed ID: 16661632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phycoerythrin is absent from the pyrenoid of Porphyridium cruentum: photosynthetic implications.
    McKay RM; Gibbs SP
    Planta; 1990 Jan; 180(2):249-56. PubMed ID: 24201953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncovalent Intermolecular Forces in Phycobilisomes of Porphyridium cruentum.
    Zilinskas BA; Glick RE
    Plant Physiol; 1981 Aug; 68(2):447-52. PubMed ID: 16661934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.