These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16661771)

  • 1. Electrogenic sucrose transport in developing soybean cotyledons.
    Lichtner FT; Spanswick RM
    Plant Physiol; 1981 Apr; 67(4):869-74. PubMed ID: 16661771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sucrose uptake by developing soybean cotyledons.
    Lichtner FT; Spanswick RM
    Plant Physiol; 1981 Sep; 68(3):693-8. PubMed ID: 16661981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar uptake by the dermal transfer cells of developing cotyledons of Vicia faba L. : Mechanism of energy coupling.
    McDonald R; Fieuw S; Patrick JW
    Planta; 1996 Apr; 198(4):502-509. PubMed ID: 28321659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of sucrose transport into protoplasts from developing soybean cotyledons.
    Lin W
    Plant Physiol; 1985 May; 78(1):41-5. PubMed ID: 16664205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar Transport into Protoplasts Isolated from Developing Soybean Cotyledons : II. Sucrose Transport Kinetics, Selectivity, and Modeling Studies.
    Schmitt MR; Hitz WD; Lin W; Giaquinta RT
    Plant Physiol; 1984 Aug; 75(4):941-6. PubMed ID: 16663764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sugars and amino acids on membrane potential in two clones of sugarcane.
    Franz SL; Tattar TA
    Plant Physiol; 1981 Jan; 67(1):150-5. PubMed ID: 16661617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear sucrose transport in protoplasts from developing soybean cotyledons.
    Lin W
    Plant Physiol; 1985 Jul; 78(3):649-51. PubMed ID: 16664300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sucrose Concentration at the Apoplastic Interface between Seed Coat and Cotyledons of Developing Soybean Seeds.
    Gifford RM; Thorne JH
    Plant Physiol; 1985 Apr; 77(4):863-8. PubMed ID: 16664151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of solute transport in plasma membrane vesicles isolated from cotyledons ofRicinus communis L. : II. Evidence for a proton-coupled mechanism for sucrose and amino acid uptake.
    Williams LE; Nelson SJ; Hall JL
    Planta; 1990 Nov; 182(4):540-5. PubMed ID: 24197374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and metabolism of 1'-fluorosucrose, a sucrose analog not subject to invertase hydrolysis.
    Hitz WD; Schmitt MR; Card PJ; Giaquinta RT
    Plant Physiol; 1985 Feb; 77(2):291-5. PubMed ID: 16664044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons.
    Rosche E; Blackmore D; Tegeder M; Richardson T; Schroeder H; Higgins TJ; Frommer WB; Offler CE; Patrick JW
    Plant J; 2002 Apr; 30(2):165-75. PubMed ID: 12000453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force.
    Carpaneto A; Geiger D; Bamberg E; Sauer N; Fromm J; Hedrich R
    J Biol Chem; 2005 Jun; 280(22):21437-43. PubMed ID: 15805107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar transport into protoplasts isolated from developing soybean cotyledons : I. Protoplast isolation and general characteristics of sugar transport.
    Lin W; Schmitt MR; Hitz WD; Giaquinta RT
    Plant Physiol; 1984 Aug; 75(4):936-40. PubMed ID: 16663763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrogenicity, pH-Dependence, and Stoichiometry of the Proton-Sucrose Symport.
    Bush DR
    Plant Physiol; 1990 Aug; 93(4):1590-6. PubMed ID: 16667661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the active sucrose transport system of immature soybean embryos.
    Thorne JH
    Plant Physiol; 1982 Oct; 70(4):953-8. PubMed ID: 16662650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose-dependent H(+) transport in plasma-membrane vesicles isolated from sugarbeet leaves (Beta vulgaris L.) : Evidence in support of the H(+)-symport model for sucrose transport.
    Slone JH; Buckhout TJ
    Planta; 1991 Mar; 183(4):584-9. PubMed ID: 24193852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of membrane protein associated with sucrose transport into cells of developing soybean cotyledons.
    Ripp KG; Viitanen PV; Hitz WD; Franceschi VR
    Plant Physiol; 1988 Dec; 88(4):1435-45. PubMed ID: 16666479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a sucrose transporter isolated from the developing cotyledons of soybean.
    Aldape MJ; Elmer AM; Chao WS; Grimes HD
    Arch Biochem Biophys; 2003 Jan; 409(2):243-50. PubMed ID: 12504891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton (or hydroxide) fluxes and the biphasic osmotic response of human red blood cells.
    Bisognano JD; Dix JA; Pratap PR; Novak TS; Freedman JC
    J Gen Physiol; 1993 Jul; 102(1):99-123. PubMed ID: 8397278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane Transport in Isolated Vesicles from Sugarbeet Taproot : II. Evidence for a Sucrose/H-Antiport.
    Briskin DP; Thornley WR; Wyse RE
    Plant Physiol; 1985 Aug; 78(4):871-5. PubMed ID: 16664343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.