These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16661916)

  • 41. Effects of osmotic gradients on vacuolar malic Acid storage: a basic principle in oscillatory behavior of crassulacean Acid metabolism.
    Lüttge U; Kluge M; Ball E
    Plant Physiol; 1975 Nov; 56(5):613-6. PubMed ID: 16659355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Competing carboxylases: circadian and metabolic regulation of Rubisco in C3 and CAM Mesembryanthemum crystallinum L.
    Davies BN; Griffiths H
    Plant Cell Environ; 2012 Jul; 35(7):1211-20. PubMed ID: 22239463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Daily Changes in CO(2) and Water Vapor Exchange, Chlorophyll Fluorescence, and Leaf Water Relations in the Halophyte Mesembryanthemum crystallinum during the Induction of Crassulacean Acid Metabolism in Response to High NaCl Salinity.
    Winter K; Gademann R
    Plant Physiol; 1991 Mar; 95(3):768-76. PubMed ID: 16668052
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of malic-acid metabolism in Crassulacean-acid-metabolism plants in the dark and light: In-vivo evidence from (13)C-labeling patterns after (13)CO 2 fixation.
    Osmond CB; Holtum JA; O'Leary MH; Roeske C; Wong OC; Summons RE; Avadhani PN
    Planta; 1988 Aug; 175(2):184-92. PubMed ID: 24221711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of nitrogen availability and water conditions on competition between a facultative CAM plant and an invasive grass.
    Yu K; D'Odorico P; Carr DE; Personius A; Collins SL
    Ecol Evol; 2017 Oct; 7(19):7739-7749. PubMed ID: 29043030
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Ultrastructure and crassulacean acid metabolism in Mesembryanthemum crystallinum leaves during normal and NaCl-induced ageing].
    von Willert DJ; Kramer D
    Planta; 1972 Sep; 107(3):227-37. PubMed ID: 24477441
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L.
    Barkla BJ; Zingarelli L; Blumwald E; Smith J
    Plant Physiol; 1995 Oct; 109(2):549-556. PubMed ID: 12228611
    [TBL] [Abstract][Full Text] [Related]  

  • 48. cDNA sequence and expression of subunit E of the vacuolar H(+)-ATPase in the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum.
    Dietz KJ; Arbinger B
    Biochim Biophys Acta; 1996 Jun; 1281(2):134-8. PubMed ID: 8664311
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.
    Oh DH; Barkla BJ; Vera-Estrella R; Pantoja O; Lee SY; Bohnert HJ; Dassanayake M
    New Phytol; 2015 Aug; 207(3):627-44. PubMed ID: 25944243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM).
    Cushman JC; Tillett RL; Wood JA; Branco JM; Schlauch KA
    J Exp Bot; 2008; 59(7):1875-94. PubMed ID: 18319238
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Increased Expression of a myo-Inositol Methyl Transferase in Mesembryanthemum crystallinum Is Part of a Stress Response Distinct from Crassulacean Acid Metabolism Induction.
    Vernon DM; Bohnert HJ
    Plant Physiol; 1992 Aug; 99(4):1695-8. PubMed ID: 16669095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.
    Barkla BJ; Vera-Estrella R; Pantoja O
    Proteomics; 2012 Sep; 12(18):2862-5. PubMed ID: 22848050
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transport of Phosphoenolpyruvate by Chloroplasts from Mesembryanthemum crystallinum L. Exhibiting Crassulacean Acid Metabolism.
    Neuhaus HE; Holtum JA; Latzko E
    Plant Physiol; 1988 May; 87(1):64-8. PubMed ID: 16666128
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulatory protein phosphorylation of phosphoenolpyruvate carboxylase in the facultative crassulacean-acid-metabolism plant Mesembryanthemum crystallinum L.
    Baur B; Dietz KJ; Winter K
    Eur J Biochem; 1992 Oct; 209(1):95-101. PubMed ID: 1396723
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteomic analysis of Mesembryanthemum crystallinum leaf microsomal fractions finds an imbalance in V-ATPase stoichiometry during the salt-induced transition from C3 to CAM.
    Cosentino C; Di Silvestre D; Fischer-Schliebs E; Homann U; De Palma A; Comunian C; Mauri PL; Thiel G
    Biochem J; 2013 Mar; 450(2):407-15. PubMed ID: 23252380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased Vacuolar ATPase Activity Correlated With CAM Induction in Mesembryanthemum crystallinum and Kalanchoë blossfeldiana cv. Tom Thumb.
    Struve I; Weber A; Lüttge U; Ball E; Smith JA
    J Plant Physiol; 1985 Jan; 117(5):451-68. PubMed ID: 23195866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.
    Agarie S; Shimoda T; Shimizu Y; Baumann K; Sunagawa H; Kondo A; Ueno O; Nakahara T; Nose A; Cushman JC
    J Exp Bot; 2007; 58(8):1957-67. PubMed ID: 17452753
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Veinal-mesophyll interaction under biotic stress.
    Nosek M; Rozpądek P; Kornaś A; Kuźniak E; Schmitt A; Miszalski Z
    J Plant Physiol; 2015 Aug; 185():52-6. PubMed ID: 26276405
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L.
    Li B; Chollet R
    Arch Biochem Biophys; 1994 Oct; 314(1):247-54. PubMed ID: 7944403
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Malate synthesis by dark carbon dioxide fixation in leaves.
    Levi C; Perchorowicz JT; Gibbs M
    Plant Physiol; 1978 Apr; 61(4):477-80. PubMed ID: 16660319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.