BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16661934)

  • 1. Noncovalent Intermolecular Forces in Phycobilisomes of Porphyridium cruentum.
    Zilinskas BA; Glick RE
    Plant Physiol; 1981 Aug; 68(2):447-52. PubMed ID: 16661934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phycobilisomes of Porphyridium cruentum. I. Isolation.
    Gantt E; Lipschultz CA
    J Cell Biol; 1972 Aug; 54(2):313-24. PubMed ID: 5040862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy.
    Gantt E; Lipschultz CA; Zilinskas B
    Biochim Biophys Acta; 1976 May; 430(2):375-88. PubMed ID: 1276188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of a 50-kilodalton polypeptide in a photosystem II-phycobilisome particle from Porphyridium cruentum.
    Chereskin BM; Gantt E
    Arch Biochem Biophys; 1986 Nov; 250(2):286-93. PubMed ID: 3535676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A M(r) 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer.
    Redlinger T; Gantt E
    Proc Natl Acad Sci U S A; 1982 Sep; 79(18):5542-6. PubMed ID: 16593227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a Purified Photosystem II-Phycobilisome Particle Preparation from Porphyridium cruentum.
    Chereskin BM; Clement-Metral JD; Gantt E
    Plant Physiol; 1985 Mar; 77(3):626-9. PubMed ID: 16664110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phycobilisome Structure of Porphyridium cruentum: POLYPEPTIDE COMPOSITION.
    Redlinger T; Gantt E
    Plant Physiol; 1981 Dec; 68(6):1375-9. PubMed ID: 16662111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminus conservation in the terminal pigment of phycobilisomes from a prokaryotic and eukaryotic alga.
    Gantt E; Cunningham FX; Lipschultz CA; Mimuro M
    Plant Physiol; 1988 Apr; 86(4):996-8. PubMed ID: 16666079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum.
    Arteni AA; Liu LN; Aartsma TJ; Zhang YZ; Zhou BC; Boekema EJ
    Photosynth Res; 2008; 95(2-3):169-74. PubMed ID: 17922299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phycobilisome-thylakoid Topography on Photosynthetically Active Vesicles of Porphyridium cruentum.
    Dilworth MF; Gantt E
    Plant Physiol; 1981 Apr; 67(4):608-12. PubMed ID: 16661723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core substructure of the hemiellipsoidal phycobilisome from the red alga Porphyridium cruentum.
    Redecker D; Wehrmeyer W; Reuter W
    Eur J Cell Biol; 1993 Dec; 62(2):442-50. PubMed ID: 7925499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular morphology of cyanobacterial phycobilisomes.
    Siegelman HW; Kycia JH
    Plant Physiol; 1982 Sep; 70(3):887-97. PubMed ID: 16662595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective Absorption Cross-Sections in Porphyridium cruentum: Implications for Energy Transfer between Phycobilisomes and Photosystem II Reaction Centers.
    Ley AC
    Plant Physiol; 1984 Feb; 74(2):451-4. PubMed ID: 16663442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A photosystem II-phycobilisome preparation from the red alga, Porphyridium cruentum: oxygen evolution, ultrastructure, and polypeptide resolution.
    Clement-Metral JD; Gantt E; Redlinger T
    Arch Biochem Biophys; 1985 Apr; 238(1):10-7. PubMed ID: 2580484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition.
    Sarcina M; Tobin MJ; Mullineaux CW
    J Biol Chem; 2001 Dec; 276(50):46830-4. PubMed ID: 11590154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular architecture of a light-harvesting antenna. Isolation and characterization of phycobilisome subassembly particles.
    Yamanaka G; Lundell DJ; Glazer AN
    J Biol Chem; 1982 Apr; 257(8):4077-86. PubMed ID: 6802826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the origins of 718 nm fluorescence from Porphyridium cruentum at 77 K.
    Wang RT; Graham JR; Myers J
    Biochim Biophys Acta; 1980 Sep; 592(2):277-84. PubMed ID: 7407092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics.
    Gantt E; Lipschultz CA; Grabowski J; Zimmerman BK
    Plant Physiol; 1979 Apr; 63(4):615-20. PubMed ID: 16660778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stoichiometry of Photosystem I, Photosystem II, and Phycobilisomes in the Red Alga Porphyridium cruentum as a Function of Growth Irradiance.
    Cunningham FX; Dennenberg RJ; Mustardy L; Jursinic PA; Gantt E
    Plant Physiol; 1989 Nov; 91(3):1179-87. PubMed ID: 16667130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120.
    Ducret A; Sidler W; Wehrli E; Frank G; Zuber H
    Eur J Biochem; 1996 Mar; 236(3):1010-24. PubMed ID: 8665889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.