These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16661950)

  • 41. Evidence for an ATP-Dependent Proton Pump on the Golgi of Corn Coleoptiles.
    Chanson A; Taiz L
    Plant Physiol; 1985 Jun; 78(2):232-40. PubMed ID: 16664222
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Association of H-Translocating ATPase in the Golgi Membrane System from Suspension-Cultured Cells of Sycamore (Acer pseudoplatanus L.).
    Ali MS; Akazawa T
    Plant Physiol; 1986 May; 81(1):222-7. PubMed ID: 16664779
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Partial purification and properties of the proton-translocating ATPase of plant plasma membranes.
    Vara F; Serrano R
    J Biol Chem; 1982 Nov; 257(21):12826-30. PubMed ID: 6215404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Labeling and isolation of plasma membranes from corn leaf protoplasts.
    Perlin DS; Spanswick RM
    Plant Physiol; 1980 Jun; 65(6):1053-7. PubMed ID: 16661329
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of a NO(3)-Sensitive H-ATPase from Corn Roots.
    O'neill SD; Bennett AB; Spanswick RM
    Plant Physiol; 1983 Jul; 72(3):837-46. PubMed ID: 16663096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solubilization and partial purification of the adenosine triphosphatase from a corn root plasma membrane fraction.
    Dupont FM; Leonard RT
    Plant Physiol; 1980 May; 65(5):931-8. PubMed ID: 16661309
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proton transport in isolated vacuoles from corn coleoptiles.
    Mandala S; Taiz L
    Plant Physiol; 1985 May; 78(1):104-9. PubMed ID: 16664181
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of an ecto-ATPase of Tritrichomonas foetus.
    Jesus JB; Lopes AH; Meyer-Fernandes JR
    Vet Parasitol; 2002 Jan; 103(1-2):29-42. PubMed ID: 11750998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Mg-dependent ecto-ATPase in Leishmania amazonensis and its possible role in adenosine acquisition and virulence.
    Berrêdo-Pinho M; Peres-Sampaio CE; Chrispim PP; Belmont-Firpo R; Lemos AP; Martiny A; Vannier-Santos MA; Meyer-Fernandes JR
    Arch Biochem Biophys; 2001 Jul; 391(1):16-24. PubMed ID: 11414680
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. Kinetic properties of the basal and trypsin-stimulated activities.
    Carreira J; Muñoz E
    Mol Cell Biochem; 1975 Nov; 9(2):85-95. PubMed ID: 127930
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms of Ca2+ transport in plasma membrane vesicles prepared from cultured pituitary cells. II. (Ca2+ + Mg2+)-ATPase-dependent Ca2+ transport activity.
    Barros F; Kaczorowski GJ
    J Biol Chem; 1984 Aug; 259(15):9404-10. PubMed ID: 6146614
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential Ion Stimulation of Plasmalemma Adenosine Triphosphatase from Leaf Epidermis and Mesophyll of Nicotiana rustica L.
    Lurie S
    Plant Physiol; 1979 May; 63(5):936-9. PubMed ID: 16660840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unique Ca(2+)-activated ATPase in the nervous ganglia of Phyllocaulis soleiformis (Mollusca).
    Da Silva RS; de Paula Cognato G; Bogo MR; da Graça Fauth M; Fin CA; Thomé JW; Bonan CD; Dutra Dias R
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Jan; 131(1):55-61. PubMed ID: 11742758
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Finding of a KCl-independent, electrogenic, and ATP-driven H+-pumping activity in rat light gastric membranes and its effect on the membrane K+ transport activity.
    Im WB; Blakeman DP; Davis JP
    J Biol Chem; 1986 Sep; 261(25):11686-92. PubMed ID: 2875068
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biochemical characterization of a V-ATPase of tracheal smooth muscle plasma membrane fraction.
    Pacheco G; Lippo de Bécemberg I; Gonzalez de Alfonzo R; Alfonzo MJ
    Biochim Biophys Acta; 1996 Jul; 1282(2):182-92. PubMed ID: 8703972
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of plasma membrane adenosine triphosphatase of Neurospora crassa.
    Bowman BJ; Slayman CW
    J Biol Chem; 1977 May; 252(10):3357-63. PubMed ID: 16897
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic properties of a magnesium ion- and calcium ion-stimulated adenosine triphosphatase from the outer-membrane fraction of rat spleen mitochondria.
    Vijayakumar EK; Weidemann MJ
    Biochem J; 1977 Aug; 165(2):355-65. PubMed ID: 21656
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of the plasma membrane ATPase of Candida tropicalis.
    Blasco F; Chapuis JP; Giordani R
    Biochimie; 1981 Jun; 63(6):507-14. PubMed ID: 6455165
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of Reductions in Adenosine Triphosphate Content, Plasma Membrane-associated Adenosine Triphosphatase Activity, and Potassium Absorption in Oat Roots by Diethylstilbestrol.
    Balke NE; Hodges TK
    Plant Physiol; 1979 Jan; 63(1):53-6. PubMed ID: 16660692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Properties of the N,N'-dicyclohexylcarbodiimide resistant ATPase of Streptococcus cremoris.
    Rimpiläinen MA
    Int J Biochem; 1987; 19(8):729-32. PubMed ID: 2957254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.