These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16661970)

  • 1. Oxidative Phosphorylation in Germinating Lettuce Seeds (Lactuca sativa) during the First Hours of Imbibition.
    Hourmant A; Pradet A
    Plant Physiol; 1981 Sep; 68(3):631-5. PubMed ID: 16661970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of adenine nucleotide ratios at various values by an oxygen limitation of respiration in germinating lettuce (Lactuca sativa) seeds.
    Raymond P; Pradet A
    Biochem J; 1980 Jul; 190(1):39-44. PubMed ID: 7447934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endosperm and pericarp involvement in the supercooling of imbibed lettuce seeds.
    Bourque JE; Wallner SJ
    Plant Physiol; 1982 Nov; 70(5):1571-3. PubMed ID: 16662720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of seed priming in circumventing thermodormancy in lettuce.
    Cantliffe DJ; Fischer JM; Nell TA
    Plant Physiol; 1984 Jun; 75(2):290-4. PubMed ID: 16663613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene synthesis in lettuce seeds: its physiological significance.
    Burdett AN
    Plant Physiol; 1972 Dec; 50(6):719-22. PubMed ID: 16658250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA synthesis and the germination of light-sensitive lettuce seeds.
    Frankland B; Jarvis BC; Cherry JH
    Planta; 1971 Mar; 97(1):39-49. PubMed ID: 24493168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyribosome formation and protein synthesis in imbibed but dormant lettuce seeds.
    Fountain DW; Bewley JD
    Plant Physiol; 1973 Dec; 52(6):604-7. PubMed ID: 16658614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous abscisic Acid levels in germinating and nongerminating lettuce seed.
    Braun JW; Khan AA
    Plant Physiol; 1975 Dec; 56(6):731-3. PubMed ID: 16659382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonistic effects of high and low temperature pretreatments on the germination and pregermination ethylene synthesis of lettuce seeds.
    Burdett AN
    Plant Physiol; 1972 Aug; 50(2):201-4. PubMed ID: 16658141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Alterations in Isolated Endosperms of Lactuca sativa L. Achenes.
    Psaras GK; Paragamian K
    J Plant Physiol; 1984 Nov; 117(1):93-6. PubMed ID: 23195506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of Light-Induced [C]ent-Kaurene Metabolism and Light-Induced Germination in Grand Rapids Lettuce Seeds.
    Hazebroek JP; Coolbaugh RC
    Plant Physiol; 1991 Jul; 96(3):837-42. PubMed ID: 16668262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions.
    Preston J; Tatematsu K; Kanno Y; Hobo T; Kimura M; Jikumaru Y; Yano R; Kamiya Y; Nambara E
    Plant Cell Physiol; 2009 Oct; 50(10):1786-800. PubMed ID: 19713425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photomanipulation of phytochrome in lettuce seeds.
    Kendrick RE; Russell JH
    Plant Physiol; 1975 Aug; 56(2):332-4. PubMed ID: 16659296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Expression Profiling in Short-Term Imbibition of Wheat: Tools for Dissecting of Pasting Properties of Imbibed Wheat Seeds.
    Tamura T; Akuzawa S; Mura K
    J Food Sci; 2019 May; 84(5):946-953. PubMed ID: 30947368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine Phosphates in Germinating Radish (Raphanus sativus L.) Seeds.
    Moreland DE; Hussey GG; Shriner CR; Farmer FS
    Plant Physiol; 1974 Oct; 54(4):560-3. PubMed ID: 16658928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP Production by Respiration and Fermentation, and Energy Charge during Aerobiosis and Anaerobiosis in Twelve Fatty and Starchy Germinating Seeds.
    Raymond P; Al-Ani A; Pradet A
    Plant Physiol; 1985 Nov; 79(3):879-84. PubMed ID: 16664509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome-mediated Germination Responses in gamma-Irradiated Lettuce Seeds.
    Hsiao AI; Vidaver W
    Plant Physiol; 1974 Jul; 54(1):72-5. PubMed ID: 16658841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Far-red Sensitive Dark Processes Essential for Light- and Gibberellin-induced Germination of Lettuce Seed.
    Negbi M; Black M; Bewley JD
    Plant Physiol; 1968 Jan; 43(1):35-40. PubMed ID: 16656733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.
    Wang WQ; Song BY; Deng ZJ; Wang Y; Liu SJ; Møller IM; Song SQ
    Plant Physiol; 2015 Apr; 167(4):1332-50. PubMed ID: 25736209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing.
    Liu SJ; Song SH; Wang WQ; Song SQ
    Plant Physiol Biochem; 2015 Nov; 96():154-62. PubMed ID: 26263518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.