These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16662051)

  • 1. Oxidation of proline by mitochondria isolated from water-stressed maize shoots.
    Sells GD; Koeppe DE
    Plant Physiol; 1981 Nov; 68(5):1058-63. PubMed ID: 16662051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubilization of a Proline Dehydrogenase from Maize (Zea mays L.) Mitochondria.
    Rayapati PJ; Stewart CR
    Plant Physiol; 1991 Mar; 95(3):787-91. PubMed ID: 16668054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of drought stress on respiration of isolated corn mitochondria.
    Bell DT; Koeppe DE; Miller RJ
    Plant Physiol; 1971 Oct; 48(4):413-5. PubMed ID: 16657810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of proline by plant mitochondria.
    Boggess SF; Koeppe DE
    Plant Physiol; 1978 Jul; 62(1):22-5. PubMed ID: 16660461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Osmotic Stress on Ion Transport Processes and Phospholipid Composition of Wheat (Triticum aestivum L.) Mitochondria.
    Klein RR; Burke JJ; Wilson RF
    Plant Physiol; 1986 Dec; 82(4):936-41. PubMed ID: 16665169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Exogenous Abscisic Acid on Proline Dehydrogenase Activity in Maize (Zea mays L.).
    Dallmier KA; Stewart CR
    Plant Physiol; 1992 Jun; 99(2):762-4. PubMed ID: 16668952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation.
    Elthon TE; Stewart CR
    Plant Physiol; 1981 Apr; 67(4):780-4. PubMed ID: 16661754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the Proline Analog l-Thiazolidine-4-carboxylic Acid on Proline Metabolism.
    Elthon TE; Stewart CR
    Plant Physiol; 1984 Feb; 74(2):213-8. PubMed ID: 16663399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory and enzymatic properties of squid heart mitochondria.
    Mommsen TP; Hochachka PW
    Eur J Biochem; 1981 Nov; 120(2):345-50. PubMed ID: 7318831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of the Maize Primary Root at Low Water Potentials : III. Role of Increased Proline Deposition in Osmotic Adjustment.
    Voetberg GS; Sharp RE
    Plant Physiol; 1991 Aug; 96(4):1125-30. PubMed ID: 16668308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial heredity: a determinant in the toxic response of maize to the insecticide methomyl.
    Koeppe DE; Cox JK; Malone CP
    Science; 1978 Sep; 201(4362):1227-9. PubMed ID: 17801391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proline metabolism and transport in maize seedlings at low water potential.
    Raymond MJ; Smirnoff N
    Ann Bot; 2002 Jun; 89 Spec No(7):813-23. PubMed ID: 12102507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phosphate and uncouplers on substrate transport and oxidation by isolated corn mitochondria.
    Day DA; Hanson JB
    Plant Physiol; 1977 Feb; 59(2):139-44. PubMed ID: 16659803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of substantially chlorophyll-free pea leaf mitochondria prepared by sucrose density gradient separation.
    Nash D; Wiskich JT
    Plant Physiol; 1983 Mar; 71(3):627-34. PubMed ID: 16662878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of respiratory inhibitors on NADH, succinate and malate oxidation in corn mitochondria.
    Wilson RH; Hanson JB
    Plant Physiol; 1969 Sep; 44(9):1335-41. PubMed ID: 5379109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature and control of the tricarboxylate cycle in beetle flight muscle.
    Hansford RG; Johnson RN
    Biochem J; 1975 Jun; 148(3):389-401. PubMed ID: 1200985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. γ-Aminobutyric Acid Imparts Partial Protection from Salt Stress Injury to Maize Seedlings by Improving Photosynthesis and Upregulating Osmoprotectants and Antioxidants.
    Wang Y; Gu W; Meng Y; Xie T; Li L; Li J; Wei S
    Sci Rep; 2017 Mar; 7():43609. PubMed ID: 28272438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Physiological and biochemical mechanism of spermidine improving drought resistance in maize seedlings under drought stress.].
    Li LJ; Gu WR; Meng Y; Wang YL; Mu JY; Li J; Wei S
    Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):554-564. PubMed ID: 29692071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and properties of flight muscle mitochondria of the bumblebee Bombus terrestris (L.).
    Syromyatnikov MY; Lopatin AV; Starkov AA; Popov VN
    Biochemistry (Mosc); 2013 Aug; 78(8):909-14. PubMed ID: 24228879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative oxidase in durum wheat mitochondria. Activation by pyruvate, hydroxypyruvate and glyoxylate and physiological role.
    Pastore D; Trono D; Laus MN; Di Fonzo N; Passarella S
    Plant Cell Physiol; 2001 Dec; 42(12):1373-82. PubMed ID: 11773530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.