These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16662080)

  • 1. The effect of rotenone on respiration in pea cotyledon mitochondria.
    Johnson-Flanagan AM; Spencer MS
    Plant Physiol; 1981 Dec; 68(6):1211-7. PubMed ID: 16662080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway.
    Rustin P; Moreau F; Lance C
    Plant Physiol; 1980 Sep; 66(3):457-62. PubMed ID: 16661455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of cyanide-resistant respiration in pea cotyledon mitochondria by chloroquine.
    James TW; Spencer MS
    Plant Physiol; 1982 May; 69(5):1113-5. PubMed ID: 16662353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malate Oxidation and Cyanide-Insensitive Respiration in Avocado Mitochondria during the Climacteric Cycle.
    Moreau F; Romani R
    Plant Physiol; 1982 Nov; 70(5):1385-90. PubMed ID: 16662684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malate oxidation, rotenone-resistance, and alternative path activity in plant mitochondria.
    Wiskich JT; Day DA
    Plant Physiol; 1982 Oct; 70(4):959-64. PubMed ID: 16662651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Benzylaminopurine with Electron Transport in Plant Mitochondria during Malate Oxidation.
    Chauveau M; Dizengremel P; Roussaux J
    Plant Physiol; 1983 Dec; 73(4):945-8. PubMed ID: 16663348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C₃ succulents: comparative operation of the cytochrome, alternative, and rotenone-resistant pathways.
    Peckmann K; von Willert DJ; Martin CE; Herppich WB
    J Exp Bot; 2012 May; 63(8):2909-19. PubMed ID: 22330897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the Kinetic Behavior toward Pyridine Nucleotides of NAD-Linked Dehydrogenases from Plant Mitochondria.
    Pascal N; Dumas R; Douce R
    Plant Physiol; 1990 Sep; 94(1):189-93. PubMed ID: 16667685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the electron transport chain of pea leaf mitochondria metabolizing malate.
    Walker GH; Oliver DJ
    Arch Biochem Biophys; 1983 Sep; 225(2):847-53. PubMed ID: 6625611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of respiratory inhibitors on NADH, succinate and malate oxidation in corn mitochondria.
    Wilson RH; Hanson JB
    Plant Physiol; 1969 Sep; 44(9):1335-41. PubMed ID: 5379109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants.
    Igamberdiev AU; Bykova NV; Gardeström P
    FEBS Lett; 1997 Jul; 412(2):265-9. PubMed ID: 9256232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Malate metabolism in Hoya carnosa mitochondria and its role in photosynthesis during CAM phase III.
    Hong HT; Nose A; Agarie S; Yoshida T
    J Exp Bot; 2008; 59(7):1819-27. PubMed ID: 18403382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of mitochondria as a function of the growth stages of Neurospora crassa.
    Schwitzguébel JP; Palmer JM
    J Bacteriol; 1982 Feb; 149(2):612-9. PubMed ID: 6460022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling NADH turnover in plant mitochondria.
    Hagedorn PH; Flyvbjerg H; Møller IM
    Physiol Plant; 2004 Mar; 120(3):370-385. PubMed ID: 15032834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.