These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16662121)

  • 21. Relationships, origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations.
    Nuez F; Prohens J; Blanca JM
    Am J Bot; 2004 Jan; 91(1):86-99. PubMed ID: 21653366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial DNA Sequence Divergence among Lycopersicon and Related Solanum Species.
    McClean PE; Hanson MR
    Genetics; 1986 Mar; 112(3):649-67. PubMed ID: 17246320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organization of Ripening and Ethylene Regulatory Regions in a Fruit-Specific Promoter from Tomato (Lycopersicon esculentum).
    Deikman J; Kline R; Fischer RL
    Plant Physiol; 1992 Dec; 100(4):2013-7. PubMed ID: 16653232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Propylene-induced Responses of Immature Fruit of Normal and rin Mutant Tomatoes.
    McGlasson WB; Dostal HC; Tigchelaar EC
    Plant Physiol; 1975 Feb; 55(2):218-22. PubMed ID: 16659054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Products Released from Enzymically Active Cell Wall Stimulate Ethylene Production and Ripening in Preclimacteric Tomato (Lycopersicon esculentum Mill.) Fruit.
    Brecht JK; Huber DJ
    Plant Physiol; 1988 Dec; 88(4):1037-41. PubMed ID: 16666417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 5'-Methylthioadenosine Nucleosidase and 5-Methylthioribose Kinase Activities and Ethylene Production during Tomato Fruit Development and Ripening.
    Kushad MM; Richardson DG; Ferro AJ
    Plant Physiol; 1985 Oct; 79(2):525-9. PubMed ID: 16664444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Sodium Chloride on Fruit Ripening of the Nonripening Tomato Mutants nor and rin.
    Mizrahi Y; Zohar R; Malis-Arad S
    Plant Physiol; 1982 Feb; 69(2):497-501. PubMed ID: 16662236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression of Ripening-Associated Gene Expression in Tomato Fruits Subjected to a High CO2 Concentration.
    Rothan C; Duret S; Chevalier C; Raymond P
    Plant Physiol; 1997 May; 114(1):255-263. PubMed ID: 12223703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of Gene Expression by Ethylene in Wild-Type and rin Tomato (Lycopersicon esculentum) Fruit.
    Lincoln JE; Fischer RL
    Plant Physiol; 1988 Oct; 88(2):370-4. PubMed ID: 16666310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches.
    Trainotti L; Tadiello A; Casadoro G
    J Exp Bot; 2007; 58(12):3299-308. PubMed ID: 17925301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into the evolution of self-compatibility in Lycopersicon from a study of stylar factors.
    Kondo K; Yamamoto M; Itahashi R; Sato T; Egashira H; Hattori T; Kowyama Y
    Plant J; 2002 Apr; 30(2):143-53. PubMed ID: 12000451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening.
    Azanza F; Kim D; Tanksley SD; Juvik JA
    Theor Appl Genet; 1995 Aug; 91(3):495-504. PubMed ID: 24169841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrastructure of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation.
    Crookes PR; Grierson D
    Plant Physiol; 1983 Aug; 72(4):1088-93. PubMed ID: 16663125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variation in ripe fruit volatiles across the tomato clade: An evolutionary framework for studying fruit scent diversity in a crop wild relative.
    Barnett JR; Tieman DM; Caicedo AL
    Am J Bot; 2023 Sep; 110(9):e16223. PubMed ID: 37551422
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Fenstemaker S; Sim L; Cooperstone J; Francis D
    Plant Direct; 2022 Apr; 6(4):e394. PubMed ID: 35449754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymic Components of Sucrose Accumulation in the Wild Tomato Species Lycopersicon peruvianum.
    Stommel JR
    Plant Physiol; 1992 May; 99(1):324-8. PubMed ID: 16668869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of ripening processes in intact tomato fruit and excised pericarp discs.
    Campbell AD; Huysamer M; Stotz HU; Greve LC; Labavitch JM
    Plant Physiol; 1990 Dec; 94(4):1582-9. PubMed ID: 16667893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive evolution of the water stress-induced gene Asr2 in Lycopersicon species dwelling in arid habitats.
    Frankel N; Hasson E; Iusem ND; Rossi MS
    Mol Biol Evol; 2003 Dec; 20(12):1955-62. PubMed ID: 12949146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mannosyl- and Xylosyl-Containing Glycans Promote Tomato (Lycopersicon esculentum Mill.) Fruit Ripening.
    Priem B; Gross KC
    Plant Physiol; 1992 Jan; 98(1):399-401. PubMed ID: 16668644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of salinity on tomato fruit ripening.
    Mizrahi Y
    Plant Physiol; 1982 Apr; 69(4):966-70. PubMed ID: 16662327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.