BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16662128)

  • 1. Kinetic Complexity, Homogeneity, and Copy Number of Chloroplast DNA from the Marine Alga Olisthodiscus luteus.
    Ersland DR; Aldrich J; Cattolico RA
    Plant Physiol; 1981 Dec; 68(6):1468-73. PubMed ID: 16662128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in Plastid Number: Effect on Chloroplast and Nuclear Deoxyribonucleic Acid Complement in the Unicellular Alga Olisthodiscus luteus.
    Cattolico RA
    Plant Physiol; 1978 Oct; 62(4):558-62. PubMed ID: 16660558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1,5-bisphosphate carboxylase and the 32,000-dalton Q(B) protein: Phylogenetic implications.
    Reith M; Cattolico RA
    Proc Natl Acad Sci U S A; 1986 Nov; 83(22):8599-603. PubMed ID: 16578794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear deoxyribonucleic acid characterization of the marine chromophyte Olisthodiscus luteus.
    Ersland DR; Cattolico RA
    Biochemistry; 1981 Nov; 20(24):6886-93. PubMed ID: 7317360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast ribosomal DNA organization in the chromophytic alga Olisthodiscus luteus.
    Delaney TP; Cattolico RA
    Curr Genet; 1989 Mar; 15(3):221-9. PubMed ID: 2766384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronous Growth and Plastid Replication in the Naturally Wall-less Alga Olisthodiscus luteus.
    Cattolico RA; Boothroyd JC; Gibbs SP
    Plant Physiol; 1976 Apr; 57(4):497-503. PubMed ID: 16659514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast Protein Synthesis in the Chromophytic Alga Olisthodiscus luteus: Cell Cycle Analysis.
    Reith ME; Cattolico RA
    Plant Physiol; 1985 Sep; 79(1):231-6. PubMed ID: 16664376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and Characterization of Chloroplast DNA from the Marine Chromophyte, Olisthodiscus luteus: Electron Microscopic Visualization of Isomeric Molecular Forms.
    Aldrich J; Cattolico RA
    Plant Physiol; 1981 Sep; 68(3):641-7. PubMed ID: 16661972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro chloroplast protein synthesis by the chromophytic alga Olisthodiscus luteus.
    Reith ME; Cattolico RA
    Biochemistry; 1985 May; 24(10):2550-6. PubMed ID: 4016071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extranuclear DNA of a Marine Chromophytic Alga : RESTRICTION ENDONUCLEASE ANALYSIS.
    Aldrich J; Gelvin S; Cattolico RA
    Plant Physiol; 1982 May; 69(5):1189-95. PubMed ID: 16662368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo chloroplast protein synthesis by the chromophytic alga Olisthodiscus luteus.
    Reith ME; Cattolico RA
    Biochemistry; 1985 May; 24(10):2556-61. PubMed ID: 4016072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural, Functional, and Evolutionary Analysis of Ribulose-1,5-Bisphosphate Carboxylase from the Chromophytic Alga Olisthodiscus luteus.
    Newman SM; Cattolico RA
    Plant Physiol; 1987 Jun; 84(2):483-90. PubMed ID: 16665466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olisthodiscus represents a new class of Ochrophyta.
    Barcytė D; Eikrem W; Engesmo A; Seoane S; Wohlmann J; Horák A; Yurchenko T; Eliáš M
    J Phycol; 2021 Aug; 57(4):1094-1118. PubMed ID: 33655496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development.
    Greiner S; Golczyk H; Malinova I; Pellizzer T; Bock R; Börner T; Herrmann RG
    Plant J; 2020 May; 102(4):730-746. PubMed ID: 31856320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloroplast genome characterization in the red alga Griffithsia pacifica.
    Li N; Cattolico RA
    Mol Gen Genet; 1987 Sep; 209(2):343-51. PubMed ID: 17191345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae).
    Do HD; Kim JS; Kim JH
    Gene; 2013 Nov; 530(2):229-35. PubMed ID: 23973725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ASAP: amplification, sequencing & annotation of plastomes.
    Dhingra A; Folta KM
    BMC Genomics; 2005 Dec; 6():176. PubMed ID: 16336644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural organization of the chloroplast genome of the chromophytic alga Vaucheria bursata.
    Linne von Berg KH; Kowallik KV
    Plant Mol Biol; 1992 Jan; 18(1):83-95. PubMed ID: 1731981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic partitioning of chloroplasts at cell division in the alga Olisthodiscus, and compensating control of chloroplast replication.
    Hennis AS; Birky CW
    J Cell Sci; 1984 Aug; 70():1-15. PubMed ID: 6389575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing.
    Maier RM; Neckermann K; Igloi GL; Kössel H
    J Mol Biol; 1995 Sep; 251(5):614-28. PubMed ID: 7666415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.