BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16662128)

  • 21. Sequence and secondary structure of chloroplast 16S rRNA from the chromophyte alga Olisthodiscus luteus, as inferred from the gene sequence.
    Delaney TP; Cattolico RA
    Nucleic Acids Res; 1991 Nov; 19(22):6328. PubMed ID: 1956793
    [No Abstract]   [Full Text] [Related]  

  • 22. Acyl carrier protein-derived sequence encoded by the chloroplast genome in the marine diatom Cylindrotheca sp. strain N1.
    Hwang SR; Tabita FR
    J Biol Chem; 1991 Jul; 266(21):13492-4. PubMed ID: 1856188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands.
    de Cambiaire JC; Otis C; Lemieux C; Turmel M
    BMC Evol Biol; 2006 Apr; 6():37. PubMed ID: 16638149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and organization of rhodophyte and chromophyte plastid genomes: implications for the ancestry of plastids.
    Shivji MS; Li N; Cattolico RA
    Mol Gen Genet; 1992 Mar; 232(1):65-73. PubMed ID: 1552904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variable amounts of DNA related to the size of chloroplasts III. Biochemical determinations of DNA amounts per organelle.
    Rauwolf U; Golczyk H; Greiner S; Herrmann RG
    Mol Genet Genomics; 2010 Jan; 283(1):35-47. PubMed ID: 19911199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phylogenetic relationship of the green alga Nanochlorum eukaryotum deduced from its chloroplast rRNA sequences.
    Schreiner M; Geisert M; Oed M; Arendes J; Güngerich U; Breter HJ; Stüber K; Weinblum D
    J Mol Evol; 1995 Apr; 40(4):428-42. PubMed ID: 7769619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene for the ribulose-1,5-bisphosphate carboxylase small subunit protein of the marine chromophyte Olisthodiscus luteus is similar to that of a chemoautotrophic bacterium.
    Boczar BA; Delaney TP; Cattolico RA
    Proc Natl Acad Sci U S A; 1989 Jul; 86(13):4996-9. PubMed ID: 2740337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence organisation in nuclear DNA from Physarum polycephalum. Interspersion of repetitive and single-copy sequences.
    Hardman N; Jack PL; Fergie RC; Gerrie LM
    Eur J Biochem; 1980 Jan; 103(2):247-57. PubMed ID: 7363891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophoretic study of histones in the unicellular alga Olisthodiscus luteus.
    Rizzo PJ
    Biochim Biophys Acta; 1980 Jul; 624(1):66-77. PubMed ID: 7407245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneity, complexity, and repetition of the chloroplast DNA of Chlamydomonas reinhardtii.
    Bastia D; Chiang KS; Swift H; Siersma P
    Proc Natl Acad Sci U S A; 1971 Jun; 68(6):1157-61. PubMed ID: 4942181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chloroplast DNA levels and the control of chloroplast division in light-grown wheat leaves.
    Boffey SA; Leech RM
    Plant Physiol; 1982 Jun; 69(6):1387-91. PubMed ID: 16662409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The evolution of chloroplast genome structure in ferns.
    Wolf PG; Roper JM; Duffy AM
    Genome; 2010 Sep; 53(9):731-8. PubMed ID: 20924422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case.
    Wang W; Schalamun M; Morales-Suarez A; Kainer D; Schwessinger B; Lanfear R
    BMC Genomics; 2018 Dec; 19(1):977. PubMed ID: 30594129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae.
    de Cambiaire JC; Otis C; Turmel M; Lemieux C
    BMC Genomics; 2007 Jul; 8():213. PubMed ID: 17610731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aphidicolin uncouples the chloroplast division cycle from the mitotic cycle in the unicellular red alga Cyanidioschyzon merolae.
    Itoh R; Takahashi H; Toda K; Kuroiwa H; Kuroiwa T
    Eur J Cell Biol; 1996 Nov; 71(3):303-10. PubMed ID: 8929569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Chlamydomonas chloroplast HLP protein is required for nucleoid organization and genome maintenance.
    Karcher D; Köster D; Schadach A; Klevesath A; Bock R
    Mol Plant; 2009 Nov; 2(6):1223-32. PubMed ID: 19995727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns.
    Kwon EC; Kim JH; Kim NS
    Genes Genomics; 2020 May; 42(5):553-570. PubMed ID: 32200544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome structure of Tetrahymena pyriformis.
    Borchsenius SN; Belozerskaya NA; Merkulova NA; Wolfson VG; Vorob'ev VI
    Chromosoma; 1978 Dec; 69(3):275-89. PubMed ID: 105861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots.
    Wu Z; Gui S; Quan Z; Pan L; Wang S; Ke W; Liang D; Ding Y
    BMC Plant Biol; 2014 Nov; 14():289. PubMed ID: 25407166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA sequence organization in the mollusc Aplysia californica.
    Angerer RC; Davidson EH; Britten RJ
    Cell; 1975 Sep; 6(1):29-39. PubMed ID: 1164733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.