These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16662258)

  • 1. Synthesis and movement of abscisic Acid in water-stressed cotton leaves.
    Ackerson RC
    Plant Physiol; 1982 Mar; 69(3):609-13. PubMed ID: 16662258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L.
    Cornish K; Zeevaart JA
    Plant Physiol; 1985 Jul; 78(3):623-6. PubMed ID: 16664294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abscisic Acid Movement into the Apoplastic solution of Water-Stressed Cotton Leaves: Role of Apoplastic pH.
    Hartung W; Radin JW; Hendrix DL
    Plant Physiol; 1988 Mar; 86(3):908-13. PubMed ID: 16666007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The apoplastic pool of abscisic acid in cotton leaves in relation to stomatal closure.
    Radin JW; Hendrix DL
    Planta; 1988 May; 174(2):180-6. PubMed ID: 24221474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between loss of turgor and accumulation of abscisic acid in detached leaves.
    Pierce M; Raschke K
    Planta; 1980 Mar; 148(2):174-82. PubMed ID: 24309706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water Relations of Cotton Plants under Nitrogen Deficiency: V. Environmental Control of Abscisic Acid Accumulation and Stomatal Sensitivity to Abscisic Acid.
    Radin JW; Parker LL; Guinn G
    Plant Physiol; 1982 Oct; 70(4):1066-70. PubMed ID: 16662614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.
    Geilfus CM; Mithöfer A; Ludwig-Müller J; Zörb C; Muehling KH
    New Phytol; 2015 Nov; 208(3):803-16. PubMed ID: 26096890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abscisic Acid accumulation in cotton leaves in response to dehydration at high pressure.
    Ackerson RC; Radin JW
    Plant Physiol; 1983 Feb; 71(2):432-3. PubMed ID: 16662842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stomatal responses to water stress and to abscisic Acid in phosphorus-deficient cotton plants.
    Radin JW
    Plant Physiol; 1984 Oct; 76(2):392-4. PubMed ID: 16663851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium.
    Cornish K; Zeevaart JA
    Plant Physiol; 1984 Dec; 76(4):1029-35. PubMed ID: 16663944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abscisic Acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes.
    Creelman RA; Zeevaart JA
    Plant Physiol; 1985 Jan; 77(1):25-8. PubMed ID: 16664022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid.
    Wilkinson S; Clephan AL; Davies WJ
    Plant Physiol; 2001 Aug; 126(4):1566-78. PubMed ID: 11500555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf apoplastic alkalization promotes transcription of the ABA-synthesizing enzyme Vp14 and stomatal closure in Zea mays.
    Geilfus CM; Zhang X; Mithöfer A; Burgel L; Bárdos G; Zörb C
    J Exp Bot; 2021 Mar; 72(7):2686-2695. PubMed ID: 33345268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf Age as a Determinant in Stomatal Control of Water Loss from Cotton during Water Stress.
    Jordan WR; Brown KW; Thomas JC
    Plant Physiol; 1975 Nov; 56(5):595-9. PubMed ID: 16659351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L.
    Raschke K
    Planta; 1975 Jan; 125(3):243-59. PubMed ID: 24435438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abscisic acid in leaves and roots of willow: significance for stomatal conductance.
    Liu L; McDonald AJ; Stadenberg I; Davies WJ
    Tree Physiol; 2001 Jul; 21(11):759-64. PubMed ID: 11470662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive stomatal closure under extreme drought in an angiosperm species.
    McAdam SAM; Manandhar A; Kane CN; Mercado-Reyes JA
    J Exp Bot; 2023 Dec; ():. PubMed ID: 38155578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and metabolism of abscisic acid in detached leaves of Phaseolus vulgaris L. after loss and recovery of turgor.
    Pierce M; Raschke K
    Planta; 1981 Oct; 153(2):156-65. PubMed ID: 24276766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants.
    McAdam SA; Brodribb TJ
    Plant Physiol; 2016 Jul; 171(3):2008-16. PubMed ID: 27208264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.