BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16662508)

  • 1. Structural Changes in Thylakoid Proteins during Cold Acclimation and Freezing of Winter Rye (Secale cereale L. cv. Puma).
    Griffith M; Brown GN; Huner NP
    Plant Physiol; 1982 Aug; 70(2):418-23. PubMed ID: 16662508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance to low temperature photoinhibition is not associated with isolated thylakoid membranes of winter rye.
    Lapointe L; Huner NP; Carpentier R; Ottander C
    Plant Physiol; 1991 Oct; 97(2):804-10. PubMed ID: 16668470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Temperature Development Induces a Specific Decrease in trans-Delta-Hexadecenoic Acid Content which Influences LHCII Organization.
    Huner NP; Krol M; Williams JP; Maissan E; Low PS; Roberts D; Thompson JE
    Plant Physiol; 1987 May; 84(1):12-8. PubMed ID: 16665384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative insensitivity of mitochondria in hardened and nonhardened rye coleoptile cells to freezing in situ.
    Singh J; de la Roche AI; Siminovitch D
    Plant Physiol; 1977 Nov; 60(5):713-5. PubMed ID: 16660170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-Probe Studies during Freezing of Cells Isolated from Cold-Hardened and Nonhardened Winter Rye : MOLECULAR MECHANISM OF MEMBRANE FREEZING INJURY.
    Singh J; Miller RW
    Plant Physiol; 1982 Jun; 69(6):1423-8. PubMed ID: 16662416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of Plasma Membrane Alterations in Cold Acclimation of Winter Rye Seedlings (Secale cereale L. cv Puma).
    Uemura M; Yoshida S
    Plant Physiol; 1984 Jul; 75(3):818-26. PubMed ID: 16663711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leucine transport in cells isolated from cold-hardened and nonhardened winter rye.
    Barran LR; Singh J
    Plant Physiol; 1982 Apr; 69(4):793-7. PubMed ID: 16662298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for an in vivo conformational change in ribulose bisphosphate carboxylase-oxygenase from Puma rye during cold adaptation.
    Huner NP; Macdowall FD
    Can J Biochem; 1978 Dec; 56(12):1154-61. PubMed ID: 750074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Acyl Lipids in Reconstitution of Lipid-Depleted Light-Harvesting Complex II from Cold-Hardened and Nonhardened Rye.
    Krupa Z; Williams JP; Khan MU; Huner NP
    Plant Physiol; 1992 Oct; 100(2):931-8. PubMed ID: 16653078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the Electrophoretic Patterns of the Soluble Proteins of Winter Wheat and Rye following Cold Acclimation and Desiccation Stress.
    Cloutier Y
    Plant Physiol; 1983 Feb; 71(2):400-3. PubMed ID: 16662837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifreeze proteins modify the freezing process in planta.
    Griffith M; Lumb C; Wiseman SB; Wisniewski M; Johnson RW; Marangoni AG
    Plant Physiol; 2005 May; 138(1):330-40. PubMed ID: 15805474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of preincubation temperature on in vitro light saturated photosystem I activity in thylakoids isolated from cold hardened and nonhardened rye.
    Reynolds TL; Huner NP
    Plant Physiol; 1990 May; 93(1):319-24. PubMed ID: 16667453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in gene expression during dehardening of cold-hardened winter rye (Secale cereale L.) leaves and potential role of a peptide methionine sulfoxide reductase in cold-acclimation.
    In O; Berberich T; Romdhane S; Feierabend J
    Planta; 2005 Apr; 220(6):941-50. PubMed ID: 15843963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence Properties Indicate that Photosystem II Reaction Centers and Light-Harvesting Complex Are Modified by Low Temperature Growth in Winter Rye.
    Griffith M; Huner NP; Kyle DJ
    Plant Physiol; 1984 Oct; 76(2):381-5. PubMed ID: 16663849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and Freezing Tolerances of Mesophyll Cells from Cold-hardened and Nonhardened Winter Rye.
    Singh J
    Plant Physiol; 1981 May; 67(5):906-9. PubMed ID: 16661790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development at Cold-Hardening Temperatures : The Structure and Composition of Purified Rye Light Harvesting Complex II.
    Krupa Z; Huner NP; Williams JP; Maissan E; James DR
    Plant Physiol; 1987 May; 84(1):19-24. PubMed ID: 16665397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative spin-label study of isolated plasma membranes and plasma membranes of whole cells and protoplasts from cold-hardened and nonhardened winter rye.
    Windle JJ
    Plant Physiol; 1988 Dec; 88(4):1388-96. PubMed ID: 16666471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a Short-Term Shift to Low Temperature and of Long-Term Cold Hardening on Photosynthesis and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and Sucrose Phosphate Synthase Activity in Leaves of Winter Rye (Secale cereale L.).
    Hurry VM; Malmberg G; Gardestrom P; Oquist G
    Plant Physiol; 1994 Nov; 106(3):983-990. PubMed ID: 12232378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature development of winter rye leaves alters the detergent solubilization of thylakoid membranes.
    Griffith M; Huner NP; Hayden DB
    Plant Physiol; 1986 Jun; 81(2):471-7. PubMed ID: 16664840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Temperature Effects on Photosynthesis and Correlation with Freezing Tolerance in Spring and Winter Cultivars of Wheat and Rye.
    Oquist G; Hurry VM; Huner N
    Plant Physiol; 1993 Jan; 101(1):245-250. PubMed ID: 12231680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.