These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16662545)

  • 1. Isolation and identification of a new growth inhibitor, raphanusanin, from radish seedlings and its role in light inhibition of hypocotyl growth.
    Hasegawa K; Shiihara S; Iwagawa T; Hase T
    Plant Physiol; 1982 Aug; 70(2):626-8. PubMed ID: 16662545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototropism in Hypocotyls of Radish : I. Isolation and Identification of Growth Inhibitors, cis- and trans-Raphanusanins and Raphanusamide, Involved in Phototropism of Radish Hypocotyls.
    Hasegawa K; Noguchi H; Iwagawa T; Hase T
    Plant Physiol; 1986 Aug; 81(4):976-9. PubMed ID: 16664968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototropism in Hypocotyls of Radish: IV. Flank Growth and Lateral Distribution of cis- and trans-Raphanusanins in the First Positive Phototropic Curvature.
    Hasegawa K; Noguchi H; Tanoue C; Sando S; Takada M; Sakoda M; Hashimoto T
    Plant Physiol; 1987 Oct; 85(2):379-82. PubMed ID: 16665706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raphanusanin-induced genes and the characterization of RsCSN3, a raphanusanin-induced gene in etiolated radish hypocotyls.
    Moehninsi ; Yamada K; Hasegawa T; Shigemori H
    Phytochemistry; 2008 Nov; 69(16):2781-92. PubMed ID: 18952246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phototropism in Hypocotyls of Radish : II. Role of cis- and trans-Raphanusanins, and Raphanusamide in Phototropism of Radish Hypocotyls.
    Noguchi H; Nishitani K; Bruinsma J; Hasegawa K
    Plant Physiol; 1986 Aug; 81(4):980-3. PubMed ID: 16664969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A major factor in gravitropism in radish hypocotyls is the suppression of growth on the upper side of hypocotyls.
    Tokiwa H; Hasegawa T; Yamada K; Shigemori H; Hasegawa K
    J Plant Physiol; 2006 Dec; 163(12):1267-72. PubMed ID: 17126730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototropism in Hypocotyls of Radish : III. Influence of Unilateral or Bilateral Illumination of Various Light Intensities on Phototropism and Distribution of cis- and trans-Raphanusanins and Raphanusamide.
    Noguchi H; Hasegawa K
    Plant Physiol; 1987 Mar; 83(3):672-5. PubMed ID: 16665305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA double-strand breaks promote endoreduplication in radish cotyledon.
    Matsuda M; Iwata Y; Koizumi N; Mishiba KI
    Plant Cell Rep; 2018 Jun; 37(6):913-921. PubMed ID: 29532249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of light and auxin transport inhibitors on endoreduplication in hypocotyl and cotyledon.
    Tanaka R; Amijima M; Iwata Y; Koizumi N; Mishiba KI
    Plant Cell Rep; 2016 Dec; 35(12):2539-2547. PubMed ID: 27637202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action spectra for the inhibition of growth in radish hypocotyls.
    Jose AM; Vince-Prue D
    Planta; 1977 Jan; 136(2):131-4. PubMed ID: 24420317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of phenylalanine transaminase and phenylalanine ammonia-lyase activities in etiolated and light irradiated radish seedlings (Raphanus sativus L.).
    Tomè F; Campedelli L; Bellini E
    Experientia; 1975 Oct; 31(10):1119-21. PubMed ID: 1204714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of phenylalanine ammonia-lyase in etiolated and far-red irradiated radish seedlings.
    Bellini E; Van Poucke M
    Planta; 1970 Mar; 93(1):60-70. PubMed ID: 24496662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First Report of Leptosphaeria biglobosa Causing Black Leg on Raphanus sativus in Central China.
    Cai X; Yang L; Zhang J; Li GQ
    Plant Dis; 2014 Jul; 98(7):993. PubMed ID: 30708913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polar transport of kinetin in tissues of radish.
    Radin JW; Loomis RS
    Plant Physiol; 1974 Mar; 53(3):348-51. PubMed ID: 16658704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls.
    Hasegawa T; Yamada K; Kosemura S; Yamamura S; Hasegawa K
    Phytochemistry; 2000 Jun; 54(3):275-9. PubMed ID: 10870181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptional profiling-based identification of raphanusanin-inducible genes.
    Moehninsi ; Miura K; Nakajyo H; Yamada K; Hasegawa K; Shigemori H
    BMC Plant Biol; 2010 Jun; 10():111. PubMed ID: 20553608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of rutin on vegetative growth of mung bean (Vigna radiata) seedlings and its interaction with indoleacetic acid.
    Liang H; Sagawa Y; Li QX
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Aug; 31(4):361-8. PubMed ID: 16121006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the cotyledons in the photocontrol of hypocotyl extension in Cucumis sativus L.
    Black M; Shuttleworth JE
    Planta; 1974 Mar; 117(1):57-66. PubMed ID: 24458299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opening of the hypocotyl hook in seedlings as influenced by light and adjacent tissues.
    Powell RD; Morgan PW
    Planta; 1980 Mar; 148(2):188-91. PubMed ID: 24309708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methyl Jasmonate- and Light-Induced Glucosinolate and Anthocyanin Biosynthesis in Radish Seedlings.
    Al-Dhabi NA; Arasu MV; Kim SJ; RomijUddin M; Park WT; Lee SY; Park SU
    Nat Prod Commun; 2015 Jul; 10(7):1211-4. PubMed ID: 26411013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.