These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16662589)

  • 1. Effects of 2,4-dinitrophenol on membrane lipids of roots.
    Jackson PC; John JB
    Plant Physiol; 1982 Sep; 70(3):858-62. PubMed ID: 16662589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences between Effects of Undissociated and Anionic 2,4-Dinitrophenol on Permeability of Barley Roots.
    Jackson PC
    Plant Physiol; 1982 Nov; 70(5):1373-9. PubMed ID: 16662682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in Membrane Lipids of Roots Associated with Changes in Permeability: I. EFFECTS OF UNDISSOCIATED ORGANIC ACIDS.
    Jackson PC
    Plant Physiol; 1980 Nov; 66(5):801-4. PubMed ID: 16661529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of P NMR to Assess Effects of DNP on ATP Levels in Vivo in Barley Roots.
    Jackson PC; Pfeffer PE; Gerasimowicz WV
    Plant Physiol; 1986 Aug; 81(4):1130-3. PubMed ID: 16664955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anesthetics alter the lipid composition of barley-root membranes.
    Jackson PC; St John JB
    Planta; 1984 Nov; 162(5):415-21. PubMed ID: 24253222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent effects of 2,4-dinitrophenol (DNP) on proliferation, endocytosis, fine structure and DNP resistance in Tetrahymena.
    Nilsson JR
    J Eukaryot Microbiol; 1995; 42(3):248-55. PubMed ID: 7496383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of organic acids on ion uptake and retention in barley roots.
    Jackson PC; Taylor JM
    Plant Physiol; 1970 Oct; 46(4):538-42. PubMed ID: 16657502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of action of DNP on phospholipid bilayer membranes.
    McLaughlin S
    J Membr Biol; 1972 Dec; 9(1):361-72. PubMed ID: 24177658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid composition of plasma membranes isolated from light-grown barley (Hordeum vulgare) leaves: identification of cerebroside as a major component.
    Rochester CP; Kjellbom P; Andersson B; Larsson C
    Arch Biochem Biophys; 1987 Jun; 255(2):385-91. PubMed ID: 3592680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of in vitro hyperthermia on fatty acids of red blood cells and plasma lipids from patients with multiple sclerosis.
    Cherayil GD
    J Neurol Sci; 1990 Feb; 95(2):141-51. PubMed ID: 2324765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity.
    Calder PC; Yaqoob P; Harvey DJ; Watts A; Newsholme EA
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):509-18. PubMed ID: 8002957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liposomal Form of 2,4-Dinitrophenol Lipophilic Derivatives as a Promising Therapeutic Agent for ATP Synthesis Inhibition.
    Vlasova KY; Ostroverkhov P; Vedenyapina D; Yakimova T; Trusova A; Lomakina GY; Vodopyanov SS; Grin M; Klyachko N; Chekhonin V; Abakumov M
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the ADP/ATP and aspartate/glutamate antiporters in the uncoupling effect of fatty acids, lauryl sulfate, and 2, 4-dinitrophenol in liver mitochondria.
    Samartsev VN; Markova OV; Zeldi IP; Smirnov AV
    Biochemistry (Mosc); 1999 Aug; 64(8):901-11. PubMed ID: 10498806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of an abrupt rise in 2,4-dinitrophenol concentration on the growth of a turbidostat Saccharomyces cerevisiae culture].
    Kaliuzhin VA
    Mikrobiologiia; 1990; 59(5):756-63. PubMed ID: 2074851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity.
    López-Pérez L; Martínez-Ballesta Mdel C; Maurel C; Carvajal M
    Phytochemistry; 2009 Mar; 70(4):492-500. PubMed ID: 19264331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energization of Comamonas testosteroni ATCC 17454 for indicating toxic effects of chlorophenoxy herbicides.
    Loffhagen N; Härtig C; Babel W
    Arch Environ Contam Toxicol; 2003 Oct; 45(3):317-23. PubMed ID: 14674583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of organic acids, amino acids, k, and cl from barley roots treated anaerobically and with metabolic inhibitors.
    Hiatt AJ; Lowe RH
    Plant Physiol; 1967 Dec; 42(12):1731-6. PubMed ID: 16656712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of tissue hypermetabolism in stimulation of ventilation by dinitrophenol.
    Levine S
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Jul; 43(1):72-4. PubMed ID: 19413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of fatty acids from root and shoot lipids ofCapsicum species.
    Lyons JM; Lippert LF
    Lipids; 1966 Mar; 1(2):136-40. PubMed ID: 17805668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barley (Hordeum distichon L.) roots synthesise volatile aldehydes with a strong age-dependent pattern and release (E)-non-2-enal and (E,Z)-nona-2,6-dienal after mechanical injury.
    Delory BM; Delaplace P; du Jardin P; Fauconnier ML
    Plant Physiol Biochem; 2016 Jul; 104():134-45. PubMed ID: 27031425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.