These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16662637)

  • 41. Fate of Glyphosate during Production and Processing of Glyphosate-Resistant Sugar Beet ( Beta vulgaris).
    Barker AL; Dayan FE
    J Agric Food Chem; 2019 Feb; 67(7):2061-2065. PubMed ID: 30694061
    [TBL] [Abstract][Full Text] [Related]  

  • 42. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14.
    Lv X; Jin Y; Wang Y
    Comput Biol Chem; 2018 Aug; 75():1-10. PubMed ID: 29705503
    [TBL] [Abstract][Full Text] [Related]  

  • 43. First Report of Beet black scorch virus in the United States.
    Weiland JJ; Larson RL; Freeman TP; Edwards MC
    Plant Dis; 2006 Jun; 90(6):828. PubMed ID: 30781254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution of Root Morphology in Table Beet: Historical and Iconographic.
    Goldman IL; Janick J
    Front Plant Sci; 2021; 12():689926. PubMed ID: 34447400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Abscisic Acid metabolism by source and sink tissues of sugar beet.
    Daie J; Wyse R; Hein M; Brenner ML
    Plant Physiol; 1984 Apr; 74(4):810-4. PubMed ID: 16663515
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phloem Unloading in Developing Leaves of Sugar Beet : I. Evidence for Pathway through the Symplast.
    Schmalstig JG; Geiger DR
    Plant Physiol; 1985 Sep; 79(1):237-41. PubMed ID: 16664377
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and Physiological Changes in Sugar Beet Leaves during Sink to Source Conversion.
    Fellows RJ; Geiger DR
    Plant Physiol; 1974 Dec; 54(6):877-85. PubMed ID: 16658993
    [TBL] [Abstract][Full Text] [Related]  

  • 48. End-Product Control of Carbon Metabolism in Culture-Grown Sugar Beet Plants (Molecular and Physiological Evidence on Accelerated Leaf Development and Enhanced Gene Expression).
    Kovtun Y; Daie J
    Plant Physiol; 1995 Aug; 108(4):1647-1656. PubMed ID: 12228569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of cutting on solute uptake by plasma membrane vesicles from sugar beet (Beta vulgaris L.) leaves.
    Sakr S; Lemoine R; Gaillard C; Delrot S
    Plant Physiol; 1993 Sep; 103(1):49-58. PubMed ID: 8208858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sodium and proline accumulation as osmoregulators in tolerance of sugar beet genotypes to salinity.
    Pakniyat H; Armion M
    Pak J Biol Sci; 2007 Nov; 10(22):4081-6. PubMed ID: 19090283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of Beet necrotic yellow vein virus and Freezing Temperatures on Sugar Beet Roots in Storage.
    Strausbaugh CA; Eujayl IA
    Plant Dis; 2018 May; 102(5):932-937. PubMed ID: 30673380
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Sugar beet (Beta vulgaris L.) morphogenesis in vitro: effects of phytohormone type and concentration in the culture medium, type of explants, and plant genotype on shoot regeneration frequency].
    Mishutkina IaV; Gaponenko AK
    Genetika; 2006 Feb; 42(2):210-8. PubMed ID: 16583705
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium Application Enhances Drought Stress Tolerance in Sugar Beet and Promotes Plant Biomass and Beetroot Sucrose Concentration.
    Hosseini SA; Réthoré E; Pluchon S; Ali N; Billiot B; Yvin JC
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31382384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uptake and distribution of N-phosphonomethylglycine in sugar beet plants.
    Gougler JA; Geiger DR
    Plant Physiol; 1981 Sep; 68(3):668-72. PubMed ID: 16661977
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Source and sink leaf metabolism in relation to Phloem translocation: carbon partitioning and enzymology.
    Giaquinta R
    Plant Physiol; 1978 Mar; 61(3):380-5. PubMed ID: 16660297
    [TBL] [Abstract][Full Text] [Related]  

  • 56. First Report of Charcoal Rot of Sugar Beet Caused by Macrophomina phaseolina in Greece.
    Karadimos DA; Karaoglanidis GS; Klonari K
    Plant Dis; 2002 Sep; 86(9):1051. PubMed ID: 30818546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.).
    Wu GQ; Feng RJ; Wang SM; Wang CM; Bao AK; Wei L; Yuan HJ
    Front Plant Sci; 2015; 6():581. PubMed ID: 26284097
    [TBL] [Abstract][Full Text] [Related]  

  • 58. First Report of Fusarium Yellows of Sugar Beet Caused by Fusarium oxysporum in Michigan.
    Hanson LE
    Plant Dis; 2006 Dec; 90(12):1554. PubMed ID: 30780988
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gramine Accumulation in Leaves of Barley Grown under High-Temperature Stress.
    Hanson AD; Ditz KM; Singletary GW; Leland TJ
    Plant Physiol; 1983 Apr; 71(4):896-904. PubMed ID: 16662926
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for active Phloem loading in the minor veins of sugar beet.
    Sovonick SA; Geiger DR; Fellows RJ
    Plant Physiol; 1974 Dec; 54(6):886-91. PubMed ID: 16658994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.